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a  b  s  t  r  a  c  t

This  article  proposes  a  method  based  on  the  reinforcement  learning  (RL)  for preventing  cascading  failure
(CF)  and  blackout  in smart  grids  by  acting  on  the  output  power  of  the  generators  in real-time.  The  pro-
posed  research  work  utilizes  the  Q-learning  algorithm  to train  the  system  for  the optimal  action  selection
strategy  during  the state-action  learning  process  by  updating  the action  values  based  on  the  obtained
rewards.  The  trained  system  then  is  able  to  relieve  congestion  of transmission  lines  in real-time  by  adjus-
ting the output  power  of the  generators  (actions)  to  prevent  consecutive  line  outages  and  blackout  after
N-1  and  N-1-1  contingency  conditions.  The  proposed  RL-based  control  is  validated  through  experimental
implementation  as  well  as simulation  studies  on the  IEEE  118-bus  test  system  for  different  contingency
case  studies.  The  results  obtained  from  the  experimental  and  simulation  studies  show  the  accuracy  and
robustness  of  the  proposed  approach  in  preventing  cascading  failure  and  blackout.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The smart grid concept based on communication and infor-
mation technology infrastructures has significantly improved the
performance of modern and wide-area power systems in the past
few decades. However, due to the large interconnections, complex-
ity of power grids, and sophisticated control structures, the major
concern with smart grids is still dealing with these vulnerabilities to
enhance stability, reliability, and security. One of the catastrophic
challenges in power systems is cascading failure (CF), where a single
fault or contingency in the system can initiate a series of unex-
pected outages and disturbances that can lead to total wide-area
blackout. For instance, the 2003 North American blackout [1,2]
or the 2011 Southwest blackout in the USA [3] demonstrates the
lack of appropriate infrastructure in the system components for
taking rapid and accurate actions to prevent the spreading of fail-
ures. This crucial challenge in power systems imposes extravagant
maintenance and restoration costs on governments and electric
power industries. Hence, there is great interest in the modeling and
prevention of cascading failures to mitigate the negative impacts
associated with this phenomenon and to improve the stability of
power grids.

As a means to investigate and analyze cascading failures and
their different aspects in power systems, various methods and
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strategies have been developed [4–12] (e.g., risk assessment and
probability reduction of cascading failures and blackouts [4,5], SASE
model [6], AC and DC power flow model [7], interaction model [8],
improved OPA model [9]).

In the SASE model [6], the authors presented a reduced dynamic
model of an extensive power system, considering limited state vari-
ables to include critical characteristics of the grid. Authors in Ref.
[8] introduced an interaction model for cascading failures. This
probabilistic model identifies the critical components of the sys-
tem that propagate cascading failures, and an interaction matrix
is acquired based on the interaction of the component failures.
This model investigates the risk of cascading failures and provides
online decision making. In the OPA model [9], the cascading fail-
ure was  approximated by considering the dynamics of demands
and DC load flow. Linear programming was utilized to re-dispatch
the generation and loads after a random line outage. The drawback
of the OPA model is that the timing of failures is ignored, which
cannot be suitable for the protective coordination studies. The CAS-
CADE model introduced in [11] is based on load dependency. In
this model, all elements of the power system are considered to be
identical, and failure of each element has an equal impact on the
other elements. The CASCADE model does not include all electri-
cal features of the grid. Branching Process is another probabilistic
model for analyzing cascading failures [12]. This model relies on the
probability distribution for investigating the total component fail-
ures and does not provide sufficient individual dynamic variables to
incorporate all dynamic characteristics associated with cascading
failures and blackouts in power systems.
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In addition to the above-mentioned methods in modeling cas-
cading failures for predictive purposes, recent research works have
been presented based on load shedding strategies for cascading
failure prevention [13,14]. The main drawback associated with the
load shedding method is that customers will be deprived of power,
which makes the various stakeholders in the power industry incur
losses.

On the other hand, some emerging algorithms in Artificial
Intelligence (AI) and machine learning such as the multi-agent sys-
tems have been widely utilized recently to enhance the power
system stability, reliability, and performance [15–19]. The main
characteristics of intelligent systems are controllability, adaptabil-
ity, simplicity, and fast response even for complicated structures.
Among the machine learning-based methods, the reinforcement
learning (RL) approach is a powerful method that has recently had
various applications in power system control [20–24]. The litera-
ture review shows that using AI and machine learning approaches
for cascading failure and blackout prevention is a novel topic and
is in its early steps of development with few research works in this
area of study [25,26].

This article proposes a novel RL control approach based on the Q-
learning algorithm for adaptive adjustment of the generated power
from different generators to prevent cascading transmission line
outages and blackout after N-1 and N-1-1 contingency conditions
without using any load shedding. In fact, for transmission line con-
tingency in the grid, the system can learn how to adjust the power
within the voltage, frequency, angle, and power flow constraints
and manage the congestion of transmission lines to prevent initial-
ization of further cascading outages in a continuous and smooth
manner rather than discrete and sudden drop of loads. In addition
to the computer simulations, this article presents an experimental
implementation of the proposed approach on a hardware replica of
the high-voltage (HV) side of the IEEE 30-bus system to fill the gap
in the literature in terms of experimental analysis and validation.
The applicability of the proposed RL method for the large-scale IEEE
118-bus power system is verified by simulation studies as well.
The advantages of this method are its accuracy in targeting the
congested lines, rapid response, reliability, and adaptiveness.

This article is organized as follows. In Section 2, an introduction
to RL method, Q-learning algorithm, and its implementation pro-
cess for this work are presented. In Section 3, experimental testbed
and case studies are discussed. In Section 4, experimental and sim-
ulation results are presented and discussed. Finally, the conclusion
is presented in Section 5.

2. Reinforcement learning approach

2.1. Reinforcement learning method and Q-learning algorithm

Reinforcement Learning is a type of machine learning method
in which an agent (controller unit) interacts with the environment
(process) by means of states, actions, and rewards to learn an opti-
mal  policy to reach a pre-defined target. In fact, at each time step,
by transition from state to action, a reward is received by the agent.
The main objective of the reinforcement learning is to discover
an optimal policy in which the expected cumulative rewards are
maximized [27].

The reinforcement learning process associated with a set of
states and actions (state and action space) in addition to the reward
function is defined as a Markov decision process (MDP) [27]. An
MDP with finite state and action space (FMDP) is presented by a
tuple S, A, Pa

snsn+1 , �a
snsn+1 , where S is the state space, A is the action

space, Pa
snsn+1 : Sn × A × Sn+1 → [0, 1] is defined as the transition

probability function presenting transition from the nth state sn

to the next state sn+1, �a
snsn+1 : Sn × A × Sn+1 → R  is the reward

function that defines the immediate reward after the state transi-
tion. At each step of iteration t, the agent receives the state signal
of the environment st ∈ S and an action at ∈ A is selected based on
the action selection probability p (st, at) which is the policy that
action at is selected in state st. Then, according to P (st, at, st+1),
state transits from st to st+1 ∈ S and a reward rt+1 is generated
based on � (st, at, st+1).

In the RL theory, several actions might be selected by each agent
in each specific state. Then, for each selected action, a reward is
generated for the evaluation of the taken action. Next, the goal is
to maximize the expected discounted returns (Rt) including the
cumulative rewards during the interaction by:

Rt = rt+1 + �rt+2 + �2rt+3 + · · · =
∑∞

n=0
�nrt+n+1 (1)

where � ∈ [0, 1] is discount factor.
The essential part in almost all RL algorithms is to estimate the

value functions consisting of state-value and action-value functions
[28]. The state-value and action-value functions are defined by (2)
and (3), respectively:

V� (s) = E�

{ ∞∑
n=0

�nrt+n+1|st = s

}
(2)

Q � (s, a) = E�

{ ∞∑
n=0

�nrt+n+1|st = s, at = a

}
(3)

The state-value function is described by the expected following
returns regarding the policy � in the state s. However, the action-
value function is presented by the expected returns for the state s
and chosen action a and then is subsequently followed by the policy
� (s, a).

The Q-learning algorithm is one of the well-known model-free
techniques based on Temporal Difference (TD) learning for solving
the RL problem. In Q-learning algorithm, the action-value func-
tion (Q-value) defined in (3) is obtained. Eventually, the derived
expression of Q-learning based on the Bellman optimality function
is described by:

Qt+1 (st, at) = Qt (st, at)+ ˛[rt+1 + �max
a

Qt (st+1, a)− Qt (st, at)] (4)

where  ̨ ∈ [0, 1] is the learning rate. Qt (st, at) is initialized (esti-
mated) first and action at is selected in state st. Then, the following
state st+1 is obtained with an immediate reward rt+1 and the
max

a
Qt (st+1, a) associated with the new state st+1 is calculated.

Next, the error is calculated as rt+1 + �max
a

Qt (st+1, a)− Qt (st .at)

and then the Q-value is updated to Qt+1 (st, at). Basically, a lookup
Q-table (Q-matrix) is utilized for storing and updating the expected
future values (Q-function). The Q-function is typically stored in
a Q-table and indexed by state and action. Then, by initializing
arbitrary values, the optimal Q-function is approximated itera-
tively. The table entry for state-action is updated according to
(4). In order to obtain an optimal Q-value, there should be a bal-
ance between the exploration and exploitation which is called
exploration-exploitation trade-off [27]. This means that all possible
actions should be considered in every state with nonzero prob-
ability. To ensure appropriate trade-off, the softmax (Boltzmann
exploration) action selection strategy is used where the probability
of selected actions is weighted based on their Q-values by:

P (a|s) = e
Q (s,a)

T∑
ae

Q (s,a)
T

(5)

where T ≥ 0 is the temperature parameter. Lower values of T will
lead the action selection policy to more greedy strategy and higher
values will cause more random strategy. Practically, the value of T
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