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a  b  s  t  r  a  c  t

The  three-phase  state  estimation  algorithms  developed  for  distribution  systems  (DS)  are  based  on  tra-
ditional  approaches,  requiring  components  modeling  and  the  complete  knowledge  of  grid  parameters.
These  algorithms  are  capable  of dealing  with  the  particular  characteristics  of  DS  but  cannot  be  used in
cases  where  grid  topology  and  parameters  are  unknown,  which  is  the  most  common  situation  in existing
low  voltage  grids.

This  paper  presents  a novel  three-phase  state  estimator  for DS that enables  the  explicit  estimation  of
voltage  magnitudes  and  phase  angles  in  all phases,  neutral,  and  ground  wires  even  when  grid  topology
and  parameters  are  unknown.  The  proposed  approach  is  based  on  the  use  of  auto-associative  neural
networks,  the autoencoders  (AE),  which  only  require  an historical  database  and  few  quasi-real-time
measurements  to perform  an  effective  state  estimation.

Two  test  cases  were  used  to  evaluate  the algorithm’s  performance:  a low  and  a  medium  voltage  grid.
Results  show  that  the  algorithm  provides  accurate  results  even  without  information  about  grid  topology
and  parameters.  Several  tests  were  performed  to evaluate  the  best  AE  configuration.  It  was  found  that
training  an  AE  for  each network  feeder  leads  generally  to  better  results  than  having  a single  AE for  the
entire  system.  The  same  happened  when  different  AE were  trained  for each  network  phase  in comparison
with  a single  AE  for the  three  phases.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The operation and management of distribution systems (DS) is
becoming more complex due to the multitude of assets that are
starting to be deployed in these networks. New storage devices,
flexible loads, microgeneration units, distributed generation and
electric vehicles can be very useful to improve DS efficiency, but
only if new operational methods and tools are used by distribution
system operators (DSO) to efficiently manage and control all these
distributed resources. A tool of unquestionable value for this pur-
pose is a state estimation (SE) algorithm suited for DS. Such tool
will aid the DSO to monitor and operate the DS in quasi-real-time,
similarly to what already happens in transmission networks.

The majority of the SE techniques existing nowadays are based
on conventional methods, being the most common the weighted

∗ Corresponding author at: INESC TEC (formerly INESC Porto), Campus da FEUP,
Rua  Dr. Roberto Frias, 378, 4200-465 Porto, Portugal. Tel.: +351 22 209 4212;
fax:  +351 22 209 4050.

E-mail address: fsoares@inescporto.pt (F.J. Soares).

least squares (WLS) [1]. These methods were initially designed for
transmission networks and their success relies on the complete
knowledge of grid technical parameters and topology and a big
amount of quasi-real-time measurements available (high redun-
dancy).

Although conventional methods are very accurate for trans-
mission networks, their application to DS is not straightforward
since these networks usually have multi-phase lines (sometimes
with an asymmetrical cable infrastructure), loads and microgen-
eration/dispersed generation unevenly distributed among phases
and a reduced number of quasi-real-time measurements available.
An even more important issue is the lack of information about net-
work topology and parameters, particularly at the low voltage (LV)
level.

Some changes to traditional SE methods have been proposed in
the literature, which make them capable of coping with some of
the DS characteristics. When the number of quasi-real-time mea-
surements is not enough to guarantee observability of a WLS  state
estimator, pseudo-measurements can be generated using historical
data or load curve assessment, as described in [2–6]. The authors
of [7,8] developed WLS  based methods to perform single-phase
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AE autoencoders
ANN artificial neural networks
DMS  distribution management systems
DS distribution systems
DSO distribution system operator
DTC distribution transformer controller
EPSO evolutionary particle swarm optimization
GPRS general packet radio service
HLRR hidden layer reduction rate
LV low voltage
MSE  mean square error
MV  medium voltage
POCS projection onto convex sets
SE state estimation
WLS  weighted least squares

SE assuming a smart grid scenario [7,8]. The contribution of pha-
sor measurements units to enhance distribution SE algorithms has
been analyzed in detail in [9–11]. In other works, such as [2,12],
authors have applied artificial neural networks (ANN) to estimate
system state variables. In all these studies, the unbalanced nature
of the DS was never taken into account (balanced load conditions
were always assumed). This is a key point since only a three-phase
analysis allows getting a complete quasi-real-time snapshot of the
system, something indispensable for its correct monitoring and
control. As an example, in case of emergency conditions (e.g. over or
under voltage profiles), three-phase SE may  be used to implement
precise load control actions to the costumers that are effectively
contributing for the problem instead of affecting all the clients in a
given area.

This issue is tackled in several publications available in the
literature that specifically address the three-phase state estima-
tion topic [13–19]. Two common points can be found in these
works: neutral voltage is never explicitly estimated since Kron’s
reduction is usually applied; and the algorithms are based on com-
plex three-phase mathematical equations that require the total
knowledge of grid technical parameters and topology. As in the
majority of these works phase-to-neutral voltage is disregarded,
the voltage imbalance is often miscalculated. This inaccuracy is
particularly important in 4-wire LV grids, where connection of
single-phase loads provokes imbalances in the system and the
appearance of a return current divided by the neutral and ground
circuits. This results in a reduction of phase-to-neutral voltage for
single-phase customers. The importance of knowing voltage and
neutral currents becomes evident when observing the more com-
mon neutral designs in DS, which are normally favorable to the
appearance of neutral and ground currents (due to the unbalanced
nature of the loads). Knowing neutral voltages has also a great
importance when its use is related with power quality, safety or
energy losses. Taking into account the size and complexity of some
DS, it is reasonable to admit that a three-phase state estimation tool
based on the conventional approaches will increase the computa-
tional burden in a considerable manner. This would probably make
these techniques unfeasible for quasi-real-time applications.

An effective distribution SE algorithm should therefore be capa-
ble of dealing with all the particular characteristics of DS, take
advantage of the telemetry measurements that may  be available
(both in quasi-real-time or historical records stored in distribution
management systems—DMS) and, at the same time, be fast enough
to run in quasi-real-time.

This paper proposes an innovative method for complete three-
phase state estimation (voltage magnitudes and phase angles in all
phases, neutral and ground wire), which is based on the use of a

particular kind of ANN—the autoencoders (AE). The method takes
advantage of the data gathered from the smart metering infrastruc-
ture, both in quasi-real-time and historical, and then uses artificial
intelligence capabilities to learn the behavior of the grid and accu-
rately estimate the state of the system at any moment. This avoids
two vital steps of the traditional state estimation algorithms: (1)
modeling the complex three-phase equations, which may  lead to
heavy iterative algebraic calculations and numerical/convergence
problems and (2) characterizing all the grid parameters, which are
often unknown in LV grids. Another important feature is that the
proposed method is very flexible regarding the type of electrical
variables that can be passed to the SE algorithm, meaning that a
full exploitation of all the available telemetry information is always
performed. In other words, measurements such as active/reactive
powers consumed or generated, active/reactive power flows, cur-
rent magnitudes, voltage magnitudes/phase angles, power factors,
and even energy measurements can be used whenever they are
available in quasi-real-time. For all these reasons, the proposed
method can be used for any grid, independently of the neutral and
earthing system adopted type of loads/generators present in the
system and quasi-real-time measurements available.

The algorithm performance was  tested in two  typical Por-
tuguese distribution grids: a 4-wire LV grid with several single and
three-phase loads, microgeneration units and smart meters and
a 3-wire medium voltage (MV) grid with distributed generation,
residential and industrial clients and different telemetry technolo-
gies. Accuracy and running times were analyzed under different
conditions. The tests performed included: varying the number of
neurons in the AE hidden layer, different AE types (global vs. local)
and different scenarios regarding number and type of technolo-
gies capable of transmitting measurements in quasi-real-time. For
the purpose of this work, the term “quasi-real-time” is used in the
sense of measuring the variables in a short period of time, around
15 min  (or even less, depending on the communication infrastruc-
ture).

2. Autoencoders applied to the three-phase state
estimation problem

AE are frequently applied in areas related with pattern recog-
nition and reconstruction of missing sensor signals [20,21]. Their
application in the power systems area is confined to a few works. In
two interesting papers, [22] and [23], the authors used AE to recon-
struct missing measurements in the SCADA of the DMS, to identify
errors in breaker status and to find the power system topology.
Nevertheless, the use of AE as “the core” of a three-phase state
estimation algorithm was never implemented nor tested. AE, or
auto-associative neural networks, are feedforward neural networks
where the size of the output layer (number of neurons) is always
equal to the input layer. The typical architecture of an AE is a neural
network with only one middle layer (Fig. 1). This simple architec-
ture is frequently adopted since in the generality of the applications,
networks with more hidden layers does not bring any benefit and
have proved to be more difficult to train [24].

With adequate training, an AE learns the data set pattern and
stores in its weights manifold information about the training data.
The training process of an AE is conducted to display the output
equal to its input. The first half of the AE approximates the function
f that encode the input space to the space compressed S′. For an
input space composed by an n-dimensional input vector xk (k = 1,
2, . . .,  n), the output values of the hidden neurons form a m-vector
given by:

hp = fa
(

Wa(m,n) xk + Bam

)
, k = 1, 2, . . .,  n and p = 1, . . .,  m,  (1)
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