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Natural convection effects in the heat transfer from a buried pipeline
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h i g h l i g h t s

� Natural convection around a pipe buried in a Darcy porous medium is studied.
� The case of steady state regime is investigated as a particular case.
� The pure conduction case is investigated and compared with the literature.
� The effect of buoyancy is non trivial, for all the considered values of the investigated parameters.
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a b s t r a c t

In the present paper, the effect of the buoyancy on the heat transfer from a buried pipeline is investigated.
The soil surrounding the pipe is modelled as a porous medium saturated by water, and the Darcy’s law is
assumed. Reference is made to a time-varying temperature distribution on the soil surface, and uniform
and constant temperature on the pipe wall. The steady state regime is investigated as particular case. The
heat power per unit length is evaluated for different values assumed by the Darcy–Rayleigh number, thus
revealing that, for high values of Ra, the natural convection effects are non trivial. A comparison with the
case of pure conduction is made for the limiting case of a vanishing value of Ra, revealing an excellent
agreement.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Heat transfer from buried pipes and cables has been widely
investigated in the literature because it is crucial in many engi-
neering applications [1–9]. In the above mentioned papers, the
typical approach to the problem of determining heat transfer is
to model the soil as a purely conducting solid. Indeed, the problem
investigated is that of heat conduction in a semi-infinite conduct-
ing medium around a cylinder. Interesting results are presented in
[7], where an analytical expression of the steady-state heat trans-
fer coefficient from an offshore buried pipeline to its environment
can be found. The analysis refers to the boundary condition of a
uniform temperature of the seabed, i.e. of the separation surface
between soil and sea water. More recently, the analytical expres-
sion of the heat power exchanged between soil and pipe has been
evaluated by Barletta et al. [8] in order to consider a boundary con-
dition on the soil given by a sinusoidal function of time.

In the literature, some papers investigate the natural convection
in a porous soil surrounding a cylinder. The point of view is not
necessarily strictly concerning the applications of buried pipes
and cables, and in some cases the analyses refer to an infinite med-
ium surrounding the cylinder. Farouk and Shayer [10] investigate
numerically the natural convection heat transfer from a heated
cylinder buried in a semi-infinite porous medium saturated by
water. Reference is made to the steady state regime and the upper
boundary is considered as a permeable surface. Chang et al. [11]
investigate the natural convection in a tube partially filled with a
porous medium. Himasekhar and Bau [12] present an analytical
and numerical study on the natural convection from horizontal
hot/cold pipes buried in a semi-infinite saturated porous medium.
Fand et al. [13] investigate the natural convection heat transfer
from a horizontal cylinder embedded in a fluid saturated porous
medium, modelled by considering both Darcy’s law and Darcy’s–
Forchheimer law. In [14] an experimental and theoretical analysis
of the steady heat convection around a heat source embedded in a
box containing a saturated porous medium is presented. Bau and
Sadhal [15] analyses the convective heat losses from a pipe buried
in a semi-infinite porous medium and Facas [16] extends the work
presented in [15] for a case with baffles attached to the cylinder. In
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[17] the steady, two-dimensional, free convection around line heat
sources and heated cylinders in unbounded saturated porous
media is presented.

An analysis of the above mentioned papers shows that most of
them refer to steady regime. In the present paper we aim to inves-
tigate the unsteady two-dimensional convection heat transfer from
an isothermal cylinder buried in a semi-infinite porous medium
saturated by water. The thermal boundary condition prescribed
on the soil surface is a time-varying temperature distribution
expressed by a sinusoidal function, and particular attention is paid
to the role of the buoyancy effects.

2. Mathematical model

Let us describe the soil surrounding a buried pipeline as a semi-
infinite porous medium saturated by water, bounded at �y ¼ H by a
surface kept at the following time-dependent temperature
distribution:

�T ¼ T0 þ DT sinðxtÞ: ð1Þ
H is the burying depth of the pipe, defined as the distance between
the soil surface and the axis of the pipe. Let us assume that the ver-
tical axis �y is parallel to the gravitational vector g, but with opposite
direction. Since pipes are usually much longer than wide, the prob-
lem under consideration can be approximated as two-dimensional,
as sketched in Fig. 1. The pipeline section is circular, with radius R0,
and its wall is kept at the uniform and constant temperature Tw.
Indeed, we are interested in studying heat transfer from the exter-
nal surface of the pipe to the soil, i.e. we are not solving for the fluid
flow inside the pipe. Let us assume that the Darcy’s law holds, the
thermophysical properties are constant and the Boussinesq’s
approximation can be applied.

On account of the above assumptions, the local mass, momen-
tum and energy balance equations in the soil domain are,
respectively,
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where the rotational has been applied in the momentum equation.
In order to generalize the study, let us introduce the following

dimensionless quantities:

x ¼ �x
R0

; y ¼ �y
R0

; r ¼ R0
�r; u ¼ �uR0

a
; v ¼ �vR0

a
;

Nomenclature

g modulus of g [m s�2]
g gravitational acceleration [m s�2]
k effective thermal conductivity [W/(m K)]
K permeability [m2]
l dimensionless length of the pipeline circumference
~n unit outward-pointing vector normal to the boundary

surface
_Q dimensionless power per unit length, Eq. (10)
Ra Darcy–Rayleigh number, Eq. (3)
R0 radius of the pipe [m]
t dimensionless time, Eq. (3)
T dimensionless temperature, Eq. (3)
Tw pipe boundary temperature [K]
T0 mean value of the boundary temperature [K]
u; v Cartesian components of the dimensionless seepage

velocity, Eq. (3)
x; y dimensionless Cartesian coordinates, Eq. (3)

Greek symbols
a effective thermal diffusivity [m2 s�1]
b volumetric coefficient of thermal expansion [K�1]
c dimensionless burying depth, Eq. (3)
DT amplitude of the boundary temperature oscillation [K]
K dimensionless parameter, Eq. (8)
r heat capacity ratio
x pulsation [s�1]
X dimensionless parameter, Eq. (8)

Mathematical symbols
r dimensionless del operator, Eq. (3)

Superscript, subscripts
� dimensional quantity

Fig. 1. Drawing of the system.

Table 1
Dimensionless heat power per unit length for c ¼ 2;C ¼ 0;Ra ¼ 0: analysis of the
different computational domains.

Domain size _Q

100 � 100 + c 4.7637
200 � 100 + c 4.7690
200 � 200 + c 4.7690
400 � 200 + c 4.7702

Table 2
Dimensionless heat power per unit length for c ¼ 2;C ¼ 0;Ra ¼ 0: analysis of the
different grids.

Grid elements _Q

6968 + c 4.7661
27,872 + c 4.7694
111,488 + c 4.7702
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