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H I G H L I G H T S

• Heat transfer enhancement about 21.27% for Re = 120 and 23.52% for Re = 240.
• Particular behavior of flow pattern and heat transfer characteristics.
• Optimized solutions are quite different for two types of geometries and Reynolds numbers.
• Arrangement of delta winglets is dependent on Reynolds number.
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A B S T R A C T

Surrogate-based optimization procedure is used tomaximize the heat transfer of multilouvered fin compact
heat exchangers with delta-winglet vortex generators (DWL). Five input parameters, such as louver angle
and DWL angles of attack and positions, were chosen. The heat transfer enhancement performance of
two distinct geometries, GEO1 and GEO2, with two rows of delta-winglets were considered on this re-
search. Reynolds numbers of 120 and 240, based on hydraulic diameter, were investigated. The surrogate-
based optimization procedure uses the NSGA-II (Non-Dominated Sorting Genetic Algorithm) combined
with artificial neural networks. Compared with the respective baseline geometry (louvered fin without
DWLs), the results showed that GEO1 optimized solutions increased the heat transfer by 21.27% and 23.52%
with associated pressure loss increase of 24.66% and 36.67% for the lower and the higher Reynolds numbers,
respectively. For GEO2 optimized solutions, the heat transfer was increased by 13.48% and 15.67% with
an increase of the pressure drop by 20.33% and 23.70%, for the lower and the higher Reynolds numbers,
respectively. The optimized solutions showed that heat transfer behind the second row of delta-
winglets are as high as that behind the first row, for both Reynolds numbers. The flow patterns and heat
transfer characteristics from optimized solutions presented some particular behavior, differently from
the findings when louvered fin and DWLs are applied separately.

© 2016 Published by Elsevier Ltd.

1. Introduction

The subject of heat transfer enhancement is of significant in-
terest in developing compact heat exchangers to meet the need for
high efficiency and low cost, which are as small as possible and as
light as possible. The combination of multi-louvered fins and delta-
winglet vortex generators has shown to be a promising strategy to
enhance heat transfer in compact heat exchangers. Both louvered
fins and vortex generators are recognized as enhancement tech-
niques that have shown good results for heating, ventilation, air-
conditioning and refrigeration applications.

The first attempt to the combination of louver fins and delta win-
glets vortex generators was a patent by Diemer-Lopes and Yanagihara
[1] in which both enhancement techniques were applied to fin-
tube heat exchangers for air-conditioning application. Dezan et al.
[2] numerically investigated the combination of louver and delta-
winglets applied to flat-tube compact heat exchangers. The screening
analyses of the input parameters in terms of heat transfer and pres-
sure drop indicated that there is no interaction between louver angle
and DWL parameters. The authors also showed that the contribu-
tion of louver angle and delta-winglet parameters is strongly
dependent of louver height, DWL frontal area and Reynolds number
on heat transfer; instead, the louver angle is the most significant
contributor to the friction factor. Huisseune et al. [3] studied the
influence of the louver and delta winglet geometry on a round tube
heat exchanger. The main conclusion was that small fin pitch and
large louver angle cause strong deflection of the flow and then a
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great contribution of the louvers is observed. However, in this case,
the generation of longitudinal vortices was suppressed and then the
effect of DWL was small.

Sanders and Thole [4] studied the effects of winglets to augment
tube wall heat transfer in louvered fin heat exchangers. Regarding
Reynolds number of 230, none of the winglet arrangements pro-
duced augmentations greater than 4%. Augmentations at Reynolds
numbers of 615 and 1016 were much higher than those ones at 230,
and the best heat transfer enhancement was found with rectangu-
lar winglets giving 38%, 36% and 3% at Reynolds numbers of 1016,
615 and 230, respectively. Numerical and experimental investiga-
tions of heat transfer augmentation along the tube wall of a
multilouvered fin by using delta winglet were made by Lawson and
Thole [5]. The piercings disrupted the vortex formation by allow-
ing flow pass through the piercings and following the louver-
directed flow path. While piercings were shown to affect negatively
the heat transfer performance along the tube wall relative to win-
glets placed on solid louvered fins, they have the desirable effect
of lowering pressure losses.

Salviano et al. [6] proposed a thermal-hydraulic optimization pro-
cedure for DWL angles of attack and positions on thermal-hydraulic
performance of plate-fin compact heat exchanger by using surrogate-
based optimization and direct optimization. Direct optimization
reported better results than surrogate-based optimization for all ob-
jective functions. Abdollahi and Shams [7] optimized shape and angle
of attack of winglet vortex generator in a rectangular channel for
heat transfer enhancement. A combination of CFD, artificial neural
networks and non-sorting genetic algorithmwere applied to the op-
timization process. Mishra et al. [8] proposed a genetic algorithm
(GA) based optimization technique for crossflow plate-fin heat ex-
changers using offset-strip fins. Tan et al. [9] reported the use of
artificial neural network (ANN) models to simulate the thermal per-
formance of a compact fin-tube heat exchanger.

Xie et al. [10] used artificial neural network (ANN) to correlate
experimentally the computed Nusselt numbers and friction factors
of three kinds of fin-and-tube heat exchangers having plain fins, slit
fins and fins with longitudinal delta-winglet vortex generators.
Sanaye and Dehghandokht [11] proposed a modeling and multi-
objective optimization of parallel flow condenser.

Hatami et al. [12] used a vortex generator heat exchanger to
recover exergy from the exhaust of an OM314 diesel engine. Twenty
delta-winglet vortex generators with angle of attack equal to 30°
were used to increase the heat recovery. Results from optimiza-
tion indicated that high engine loads and lowwater mass flow rates
were more suitable from the second law view point to minimize
the irreversibility and maximize the exergy recovery in the heat
exchanger.

Hatami et al. [13] proposed a new design of heat exchanger to
recover exergy from exhaust of a diesel engine. Twenty vortex gen-
erators with optimum dimensions and angle of attack were located
in the exhaust to reach more exergy recovery. The authors showed
that the proposed heat exchanger enhanced the heat recovery sig-
nificantly. Also, exergy analysis confirmed that VGs can enhance
exergy recoverymore than 50% compared to previous simple designs.

In this research, the surrogate-based optimization (Artificial
Neural Networks combined with Non-Dominated Sorting Genetic
Algorithm) of heat transfer is used. The input variables for optimi-
zation procedure are louver angle, DWL angle of attack and DWL
streamwise positions for two rows of DWLs. The heat transfer en-
hancement performance of two distinct geometries, GEO1 and GEO2,
was evaluated. For GEO1, the louver height is smaller than the louver
height of the GEO2 but with higher DWL frontal area than that of
the GEO2. Moreover, both geometries have the same total superfi-
cial area and hydraulic diameter. Latin Hypercube Sampling (LHS)
is used as the method to generate random samples from some prior
probability distribution on parameter space. This method is well

known as a successful method applied to design computer experi-
ments, especially when the dimension of the solution design space
notably grows. Finally, there are no reports taking into account the
heat transfer optimization of the independent input variables for
two rows of DWLs by considering simultaneously their relation-
ships with louver angle. Moreover, the flow characteristics and the
heat transfer patterns of the optimized solutions as well as the in-
teractions between longitudinal vortices and louver-directed flows
are discussed.

1.1. Surrogate-based optimization

For any design andmodeling purpose, the ultimate aim is to gain
sufficient insight into the system of interest so as to provide more
accurate predictions and better designs. As computing power has
rapidly increased and made accessible, it is possible to model some
of these processes with a sophisticated computer code. In the past
decades, computer experiments or computer-based simulations have
become topics in statistics and in engineering, receiving great at-
tention from both practitioners and the academic community.

Currently, there are different DoE methods that can be classi-
fied into two categories: “classic” DoE methods and “modern” DoE
methods. The classic DoE methods, such as full-factorial design,
Central Composite Design (CCD), Box–Behnken and D-Optimal Design
(DOD), were developed for laboratory experiments, aiming at re-
ducing the effect of random error. In contrast, modern DoE methods
such as Latin Hypercube Sampling (LHS), Orthogonal Array Design
(OAD) and Uniform Design (UD) were developed for deterministic
computer experiments without random error. An overview of the
classic andmodern DoEmethods was presented by Giunta et al. [14].
LHS has long been used as an alternative to grids of computer ex-
periments and is applied to the present work. Similarly to a regular
grid, a LHS partitions each parameter range into equally spaced
values.

Artificial Neural Networks (ANN) using back propagationmethod
was chosen as the surrogate model. In this method, weight values
are adjusted in an iterative fashion while moving along the error
surface to arrive at a minimal range error, when inputs are pre-
sented to the network to learn the pattern of the data.

1.1.1. Artificial neural network (ANN)
Artificial neural network (ANN) plays an important role in pre-

dicting the output of linear and non-linear problems in different
fields of research. The term neural network has evolved to encom-
pass a large class of models and “learning” (i.e., parameter estimation)
methods [15].

Generally, a neural network means a network of many simple
processors (units) operating in parallel. Each processor has a small
amount of local memory. The units are connected by communica-
tion channels (connections), which usually carry numeric data,
encoded by one of various ways. One of the best-known examples
of a biological neural network is the human brain. It has the most
complex and the most powerful structure, which, by learning and
training, controls human behavior toward responding to any problem
encountered in everyday life.

A multilayer-perceptron (MLP; Fig. 1) that consists of input,
hidden and output layers with nonlinear and linear activation func-
tions in the hidden and output layers, respectively, approximates
inputs and outputs as follows:
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where d is a pre-specified integer, β j is the weight connection
between the output and the jth component in the hidden layer, and
b vj j( ) is the output of the jth unity in the hidden layer,
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