Accepted Manuscript

Title: Parametric study of operating and design variables on the performance of a membrane-based absorber

Author: M. Venegas, M. de Vega, N. García-Hernando

PII:	\$1359-4311(15)01477-5
DOI:	http://dx.doi.org/doi: 10.1016/j.applthermaleng.2015.12.074
Reference:	ATE 7488
To appear in:	Applied Thermal Engineering
Received date:	5-10-2015

Accepted date: 19-12-2015

Please cite this article as: M. Venegas, M. de Vega, N. García-Hernando, Parametric study of operating and design variables on the performance of a membrane-based absorber, *Applied Thermal Engineering* (2016), http://dx.doi.org/doi: 10.1016/j.applthermaleng.2015.12.074.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Parametric study of operating and design variables on the
2	performance of a membrane-based absorber
3	
4	M. Venegas ^{1,2,3*} , M. de Vega ^{1,3} , N. García-Hernando ^{1,3}
5	
6	¹ ISE Research Group, Department of Thermal and Fluids Engineering, Universidad Carlos III de Madrid,
7	Avda. Universidad 30, 28911 Leganés, Madrid, Spain
8	² GTADS Research Group, Department of Thermal and Fluids Engineering, Universidad Carlos III de
9	Madrid, Avda. Universidad 30, 28911 Leganés, Madrid, Spain
10	Associated Research Unit CSIC-Universidad Carlos III de Madrid, Spain
11	
12	
13	Highlights:
14 15	A mismohamol II O LiPa shoothan using a mismonora promhanna is simulated
15	• A microchannel H_2O -Libr absorber using a microporous memorane is simulated.
16	• Sensitivity of cooling capacity/absorber volume to various parameters is evaluated.
17	• Parameters to be optimized at the design stage of the absorber are identified.
18	• Porosity, pore diameter, solution channels depth and membrane thickness are crucial.
19	• Vapour pressure and solution inlet temperature and concentration should be optimized.
20	Abstract
21	A plate-and-frame microchannel H2O-LiBr absorber using a microporous membrane
22	as contactor between the vapour and the solution is simulated. The heat and mass transfer
23	equations, describing the absorption of the vapour phase into the solution, are solved for
24	different membrane properties and for variable design and operating conditions. The
25	parametric study evaluates the sensitivity of the ratio between the cooling capacity of the
26	chiller and the absorber volume (r_{qV}) to changes in the following parameters: width and
27	height of the solution and cooling water channels; concentration, temperature and mass
28	flow rate of the solution; temperature and mass flow rate of the cooling water; porosity,
29	pore diameter, thickness and thermal conductivity of the membrane; thickness and thermal
30	conductivity of the interface wall between the solution and the cooling water; and
31	temperature, pressure and mass flow rate of the vapour. At the design stage of the
32	membrane absorber, the parameters that can be optimized to maximize r_{qV} are porosity,
33	pore diameter, solution channels depth and membrane thickness. The thickness of the

^{*} Corresponding author. Tel.: +34 916248776; fax: +34 916249430. *E-mail address*: mvenegas@ing.uc3m.es (M. Venegas).

Download English Version:

https://daneshyari.com/en/article/7048504

Download Persian Version:

https://daneshyari.com/article/7048504

Daneshyari.com