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a  b  s  t  r  a  c  t

The  state  estimator  is  a key  tool  in  the  operation  of  any  real-world  electric  energy  system.  In this  paper,
a  state  estimator  based  on a weighted  least  squares  model  is  proposed  which  is  robust  against  outliers.
This  algorithm  presents  two relevant  features:  robustness  that is  achieved  by  readjusting  measurement
weights,  and  accuracy  that  is  attained  by considering  measurement  dependencies.  The  proposed  method
is tested  in  the IEEE  57-bus  and  118-bus  systems  and the  obtained  results  are  analyzed  using  Design  of
Experiments  and ANOVA  techniques.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation

In any real-world electric energy system, the Control Center
monitors and controls the functioning of the network in real-time,
ensuring operational security. To accomplish this task the Control
Center needs to know accurately the actual state of the system
(node voltages, power flows, etc.) at any time. These values are
estimated by the state estimator (SE).

The state estimator is a mathematical algorithm which com-
putes the most-likely state of the network, given a redundant set
of measurements captured from the system. From the statistical
point of view, the state estimation algorithm is a nonlinear multiple
regression problem, whose parameters to be estimated are those
which characterize the network state: node voltage magnitudes
and angles.

This estimated state is generally computed using the Maxi-
mum Likelihood Estimator, minimizing the weighted sum of the
squared residuals (i.e., Weighted Least Squares approach). Once the
most-likely state is obtained, the Control Center performs a “bad
data detection and identification procedure” to detect and elim-
inate those measurements whose associated standardized errors
are larger than a pre-established tolerance. The statistical tests
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commonly employed for these tasks are the �2-test and the Largest
Normalized Residual test, and are well established in the technical
literature [1]. Once outliers have been removed, the nonlinear mul-
tiple regression problem is solved again, and the final state estimate
is obtained.

If  outliers are not properly detected or eliminated, the final esti-
mate will be biased, and the Control Center will not have an accurate
knowledge of the actual state of the system, leading occasionally to
an insecure operation of the network. For this reason, the detection
and identification of bad measurements have a notorious relevance
in the estimation process. In fact, an adequate and secure control
is only achieved in the case that the SE procedure is robust enough
to detect and eliminate the presence of corrupt measurements.

Traditionally, the “outlier elimination” problem is solved
iteratively by detecting/removing suspected measurements and
re-estimating the state disregarding the rejected data. These esti-
mators are based on the weighted least squares, which shows a
notable computational efficiency; however the lack of robustness
deteriorates significantly their performance in the presence of bad
measurements. Specifically, the presence of multiple conforming
bad measurements in the measurement set may  provoke a “mask-
ing effect”: good measurements may be rejected whereas corrupted
ones may  not. This undesirable situation occurs when measure-
ment dependencies are not properly modeled.

1.2. Aim

The aim of this paper is to present a robust state estimator
based on a weighted least squares regression, which carries out
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the estimation and the bad data detection/identification processes
simultaneously by successively adjusting the weighting matrix and
considering the effect of measurement dependencies. The obtained
estimate does not require further bad measurement processing
algorithms.

1.3. Literature review

The technical literature is rich in references concerning the state
estimation problem, for instance, [2] or [1]; and there is a significant
number of references on outlier detection: [3–11]. The previous
works are focused mainly on the area of least squares linear regres-
sion. Other statistical models and estimation methods, such as
reweighed techniques [12–15], non-linear methods [16], variance-
varying models [17], or some robust estimators [18–20] have
received comparatively less attention. Nevertheless, [21] report
successful results from the application of the reweighted least devi-
ation method developed by [14], to detect data related to hurricanes
and typhoon on wave hindcast databases.

However, no so many works address the power system WLS
estimator using adjusted measurement weights. The pioneering
work reported in [22] proposes a method for readjusting the mea-
surement variances based on the residuals of previous estimations.
Ref. [23] develops this approach, improving the computational effi-
ciency and ensuring mathematical convergence. Work [24] propose
an iterative reweighted least-squares estimator that is based on
Givens Rotations and improves the robustness against outliers.

In [25], the weights of the WLS  estimator are artificially manip-
ulated, leading to a more robust estimator with the properties of
the weighted least absolute value approach. Recently, in [26], the
WLS  regression is addressed using estimated weights based on the
measurement variances.

All the aforementioned works consider that the measurement
covariance matrix is diagonal. However, recent works [27,28] show
that this matrix is generally non-diagonal. Thus, the reweighting
techniques previously proposed in the technical literature can be
improved, since such techniques cannot deal with measurement
dependencies.

1.4. Contribution

The contribution of this paper is threefold:

• First, it provides a mathematic procedure that allows apply-
ing a reweighting estimation technique (originally designed
for diagonal covariance matrices) to a non-diagonal estimation
problem.
• Second, an iterative state estimator is proposed, showing both

robustness against outliers and computational efficiency. Specif-
ically, it requires significantly less time that similar methods
proposed in the technical literature [29].
• Finally, Design of Experiments and ANOVA procedures are used to

compare the performance of the proposed method with statistical
rigor.

1.5. Paper organization

The rest of this paper is organized as follows. Section 2 develops
and formulates the Reweighted Least Squares Estimator consid-
ering measurement dependencies. Section 3 applies the Design of
Experiments and ANOVA procedures to the considered estimation
problem. Section 4 provides and analyzes results from four realistic
case studies. Finally, Section 5 provides some relevant conclusions.

2. Dependent state estimation model

Any state estimator can be formulated as a nonlinear multiple
regression problem, where the unknown parameters are the node
voltage magnitude and angle of every node, represented by Vi and
�i, respectively. These two  sets of variables form the state vector

x = [VT �T ]
T
. There are n state variables. The unknown true state

is represented by xtrue.
The unknown parameters are estimated using the information

provided by observations {z1, . . .,  zm}. These observations are cap-
tured from the system using measuring devices, and are related
with x by means of a multifunctional vector h( x). Depending on
the measurement type, the functions hi( x) differ. Expressions of
functions hi( x) are well-established in the technical literature [1].

The error terms used throughout this paper are defined below:

• Measurement residual: difference between the measurement zi
and the function hi( x) evaluated at the optimal state x̂,

Residuali = zi − hi(x)|x=x̂ = zi − hi(x̂) = ri. (1)

• Measurement error: difference between the measurement zi and
the function hi( x) evaluated at any state x,

Errori = zi − hi(x)|x=x = zi − hi(x) = ei. (2)

• Metering error: difference between the measured value and the
unknown “true” value,

Metering errori = zi − hi(x)|x=xtrue = zi − hi(x
true) = zi − ztrue

i . (3)

Note that the term “measurement residual” is solely used in the
case of comparing measurement value zi with the function hi(·)
evaluated at the optimal state x̂. Similarly, the term “measurement
error” is solely employed for comparing the measured value zi with
the function hi(·), evaluated at any state x.

Measurement errors have been traditionally modeled as an
independent unbiased Gaussian-distributed random variable. The
factual metering infrastructure within substations results in signif-
icant statistical correlations between measurement errors. Works
[27] and [28] numerically show that these correlations are signif-
icant, and its consideration may  improve the quality of the final
estimate. Therefore, hereafter measurement errors are assumed
to be dependent Gaussian-distributed unbiased random variables.
The dependence structure is modeled by means of positive-definite
non-diagonal variance-covariance matrix Cz, which can be easily
computed using the Point Estimate method [28].

As it is customary in the technical literature, all measurements
are considered synchronous. This is reasonable since in steady state
power system magnitudes change very slowly with respect to the
time needed to transfer measurements to the EMS  from Remote
Terminal Units (RTUs) or Phasor Measurement Units (PMUs).

2.1. State estimation

Given the previous assumptions, the estimation of the state vari-
ables are obtained by minimizing the weighted sum of squared
measurement errors of the multiple nonlinear regression model,
leading to a nonlinear optimization problem:

minimize
x

J = [z − h(x)]T C−1
z [z − h(x)] (4a)

subject to

c(x) = 0 g(x) ≤ 0 (4b)

where the scalar J is the objective function and c( x) and g( x) are the
equality and inequality constraints modeling zero-injections nodes
and physical operating limits, respectively. Note that matrix Cz is
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