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a  b  s  t  r  a  c  t

Lately,  much  work  in the  area  of  voltage  stability  assessment  has  been  focused  on  finding  post-
contingency  corrective  controls.  In this  article  a contribution  to this  area  will  be presented  where we
search  for  maximal  loadability  while  considering  post-contingency  corrective  controls.  This objective
is  different  from  the  usual  approach  to the  problem,  where  the  aim  is  to include  the  post-contingency
controls  in  a  security-constrained  optimal  power  flow.

Our  approach  gives  us an  optimal  control  problem  with  a variable  start  point.  Optimal  control  problems
are  generally  very  cumbersome  to solve  in high  dimensions.  However,  under  some  mild assumptions  we
find that  our  infinite  dimensional  optimization  problem  can  be  transformed  into  a finite  dimensional
one.  More  specifically,  by assuming  that the  load  recovery  is an  explicit  function  of  time  we can  specify
a  set  of  constraints  that  are  necessary  for optimality.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Contingency analysis is one of the most important issues that a
power system operator is faced with. When long term voltage sta-
bility is of concern, neglecting post-contingency corrective controls
will often lead to an overly conservative operation of the power sys-
tem. However, introducing post-contingency corrective controls
turns the contingency analysis problem into an optimal control
problem. The objective, which without corrective controls is to find
a feasible post-contingency operating point, is now to find a feasible
corrective control that saves the system from losing stability.

Several attempts at simplifying this problem appear in the
literature. A pioneering paper on corrective control of voltage insta-
bility is [1], where a method is suggested that identifies a set of
nodes where the load restoration is responsible for collapse. Min-
imal corrective controls are then determined based a hyperplane
approximation of the loadability surface.

A similar approach is taken in [2], but here a measure of the
severity of unstable cases is introduced and an energy measure
method is utilized to estimate the time available for corrective
controls.
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In the first instances of corrective security-constrained optimal
power flow (CSCOPF) [3] it was proposed that constraints for a
feasible post-contingency operating point, allowing for a limited
amount of corrective control, should be added to the optimal power
flow (OPF) problem. In [4] it was  proposed that feasibility immedi-
ately following the contingency should be added to the constraints
and an example illustrating the importance of this inclusion was
given.

In [5] a method where a constant control action is applied
throughout the load recovery process is proposed. This con-
stant control action is achieved by solving a single OPF problem.
Then feasibility of the corresponding path is investigated through
quasi-steady state (QSS) simulation. If feasibility is not obtained,
parameters (time available for controls) are changed and the pro-
cess is repeated until a feasible path is rendered or it is clear that
no control action that will save the system can be found in this
manner.

In [6] an approach based on model predictive control (MPC)
is suggested to find corrective controls in real-time operation. A
number of points in time are chosen and a corrective control that
solves an OPF with constraints on feasibility at these times, with
an assumed load recovery model that depends explicitly on time,
is computed. The first step in this control is then applied and the
problem is resolved with a new recovery model based on the latest
measurements of the systems evolution.

In [7] a technique for maximizing the loadability limit in a
specific direction of stress by tuning control parameters was
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developed. The method is designed to be able to handle corner
points of the loadability surface, since optimal solutions tend to
be located at such points.

Although much work has already been done on finding efficient
post-contingency corrective controls since the introduction of this
problem in [3], no really complete way of tackling the infinite-
dimensionality of the problem has been suggested yet. The method
proposed in [5] has the appealing feature of guaranteeing feasibility
of the control by checking each proposed control with a QSS simu-
lation tool. However, it has the limiting factor of only being able to
suggest constant controls. The method proposed in [6] seems effi-
cient, but it does not give us any information of additional system
loadability with corrective controls.

In this article a different approach will be proposed where,
instead of discretizing the system trajectory, we find the time
where the corrected path meets the stability boundary. To be able
to do this an explicit dependence of time will be used in the load
recovery model (as in [6]). Furthermore, it will be assumed that,
except for in very rare cases, there is an optimal path that only
meets the stability surface at one time instance.

It will be shown how the loadability in a given direction can be
computed when corrective controls are allowed. We  use the struc-
ture of the feasibility region and approximations of its boundary
to estimate a globally optimal corrective control. The method will
have its application in the planning stage where the operator of a
system seeks to plan operation to be able to withstand contingen-
cies as well as deviations from forecasted levels of uncertain system
parameters.

The remainder of the article is organized as follows. In the
next section the problem of determining maximal loadability with
corrective controls is formulated. In Section 3 the solution proce-
dure is outlined. Then, in Section 4 a set of optimality conditions
that applies at points where the system trajectory meets the post-
contingency stability boundary is derived. Section 5 describes how
approximations of the post-contingency stability boundary can be
used to predict the optimal trajectory of the system parameters.
In Section 6 it is discussed how these predictions can be corrected
using the optimality conditions. A small illustrative example is then
given in Section 7, before the article is concluded with a discussion
of computational aspects and a summary in Section 8.

2. Problem formulation

To understand how we can solve the problem of maximizing
loadability by post-contingency corrective controls we  must first
define the stability boundary.

2.1. Loadability limits

The following equality–inequality constraint representation of
the power system model was introduced in [8]:

 (x, �) = 0 (1)

f a,i(x) · f b,i(x) = 0, i = 1, . . .,  ns (2)

f a,i(x) ≥ 0, i = 1, . . .,  ns (3)

f b,i(x) ≥ 0, i = 1, . . .,  ns (4)

where   is a smooth function representing the power system. fa,i

and fb,i are called switching functions and are also smooth. The
vector x ∈ R

n represent the power system state, in general volt-
age magnitudes and phase angles at all nodes of the system, and
generator state variables for the generators of the system. The vec-
tor � ∈ R

m contains the system parameters which can represent
quantities such as customer demand, or active power production.
Here, we split the vector � into a sub-vector y ∈ R

k of controllable

system parameters, and a vector PL ∈ R
l of non-controllable sys-

tem parameters. The switching constraints are introduced in order
to take account of controller limits imposing constraints on the
power system control parameters. One such limiting constraint is
due to the overexcitation limiters in the generators of the system.
In unconstrained operation the generator excitation EMF  Ef is in
equilibrium given by

0 = −Eif + KiA(Vref − Vi) = f a,i(x). (5)

However, limits on the generator excitation EMF  dictate that

−Ef + Elim
f = f b,i(x) ≥ 0. (6)

A point in parameter space where, for some i ∈ {1, . . .,  ns},
fa,i(x) = fb,i(x) = 0, is referred to as a breaking point [9] due to the shape
that the PV-curve takes at such points, or a constraint switching
point [10]. At such points the limit of the control variable, in this
case Ef, is reached and the set of active constraints change.

From an initial operating point (xp, �p) satisfying the feasi-
bility constraints (1)–(4) the loadability limit in the direction of
stress ds ∈ Sm−1 (the unit sphere in R

m) is the solution to the
equality–inequality constrained optimization problem

max
x∈Rn,r∈R+

{r : (1) − (4) holds with � = �p + rds}. (7)

This problem can be solved by various methods such as contin-
uation methods [11,12], optimization methods [9], direct methods
[13] and quasi steady state (QSS) simulations [14,15].

2.2. The stability boundary

The stability boundary � is the boundary of the domain wherein
the system is small-signal stable. The surface � is made up of a num-
ber of different smooth manifolds [16]. Due to constraint switching
there are two types of loadability limits and we get the following
different types of points on the stability boundary.

• SNB: A Saddle-Node Bifurcation loadability limit is a loadability
limit that may  occur when the system Jacobian becomes singular.
This type of loadability limit is the most commonly addressed
loadability limit in voltage stability assessment VSA.
• SLL: Switching Loadability Limits [7] correspond to cases when

the power system becomes immediately unstable when a control
variable limit is reached.
• HB: Hopf Bifurcation points are points in parameter space where

the real part of one pair of complex eigenvalues of the dynamic
Jacobian becomes positive as the system parameters change so
that the system is no longer small-signal stable.
• TL: A loadability limit corresponding to a TL occurs when the

active power transfer over one line reaches the line’s thermal
limit.

The stability boundary is not smooth but rather made up of a
number of smooth manifolds which intersect at non-smooth points
that are referred to as Corner Points (CPs).

2.3. Example

Consider the system depicted in Fig. 1. This system was  analyzed
in [7] and consists of three generators and one load. It is assumed
that node 1 is the slack node (where all power deviations are bal-
anced) and that the load is of the constant power type with a fixed
power factor. The system has three parameters that are allowed to
vary; Pg2, Pg3, and PLoad. It is also assumed that each generator has
a limited Ef with Elim

f
= 2.5968 p.u. for each generator.

In Fig. 2 the stability boundary �,  made up of two SLL-surfaces,
is plotted when varying Pg3 and PLoad, while keeping Pg2 fixed at
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