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a  b  s  t  r  a  c  t

This  paper  presents  a two-stage  stochastic  unit  commitment  (UC)  model,  which  integrates  non-
generation  resources  such  as  demand  response  (DR) and  energy  storage  (ES)  while  including  risk
constraints  to balance  between  cost  and  system  reliability  due  to  the  fluctuation  of  variable  genera-
tion  such  as  wind  and  solar  power.  This  paper  uses  conditional  value-at-risk  (CVaR)  measures  to  model
risks  associated  with  the  decisions  in  a stochastic  environment.  In contrast  to chance-constrained  models
requiring  extra  binary  variables,  risk  constraints  based  on CVaR only  involve  linear  constraints  and  con-
tinuous  variables,  making  it more  computationally  attractive.  The proposed  models  with  risk  constraints
are  able  to  avoid  over-conservative  solutions  but still  ensure  system  reliability  represented  by loss  of
loads.  Then  numerical  experiments  are  conducted  to study  the  effects  of non-generation  resources  on
generator  schedules  and  the  difference  of total  expected  generation  costs  with  risk  consideration.  Sen-
sitivity  analysis  based  on  reliability  parameters  is also  performed  to test  the  decision  preferences  of
confidence  levels  and  load-shedding  loss  allowances  on generation  cost reduction.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Stochastic unit commitment (SUC) is an effective modeling tech-
nique and it has been introduced as a promising tool to deal
with power generation problems involving uncertainties [1–6].
SUC assumes scenario-based uncertainty in unit commitment
problems, i.e., it captures the uncertainty and variability of the
underlying factors by simulating a large number of scenarios. One
of prominent factors is the high penetration of renewable energy
to current power systems, which brings a lot of uncertainties
on energy supply and transmission. Considering one of renew-
able energy resources like wind energy, the forecasting errors or
intermittent energy supply in net load will cause conventional
power plants to ramp up/down frequently to ensure their energy
outputs satisfy real-time demand levels. Therefore, on one side,
non-generation resources, e.g., demand response (DR) and energy
storage (ES), have been well developed and facilitate the expan-
sion of renewable energy’s usage. On the other side, management
techniques for energy systems can be used effectively to ensure
the smooth integration of existing power plants with renewable
energy outputs [7] as well as power system reliability. This paper
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aims to investigate the unit commitment scheduling cooperated
with non-generation resources and risk control so as to improve
power system reliability and reduce cost. The main uncertainties
in consideration of this paper include renewable energy output and
demand response. This real-world problem is formulated through
a two-stage stochastic mixed integer program.

On one hand, energy storage is one of typical non-generation
resources and a feasible solution to facilitate the integration of wind
power generation. The main advantage is that it is able to provide
electricity supply when the peak demands occur to be greater than
generation capacities in a power system, or the generation costs
are extremely high. Since the storage devices can store or release
energy based on operations and demands, the incorporation of ES
can increase the flexibility of power supply systems and decrease
total costs at the same time. Some literature has discussed the
economic value of ES investments, system-economic evaluations
[8], optimal size and capacity for ES systems [9,10], and stochastic
operation management with ES on micro grid [11]. Recently, there
are three main large-scale energy storage technologies, including
pumped hydro accumulation storage (PAC), underground PAC and
compressed air energy storage (CAES). Most studies of energy stor-
age focus on CAES in the areas of economic value of investments,
system-economic perspectives, technical challenges to the integra-
tion of wind power with power systems, and production planning
[12,13]. In most of the optimization models, energy storage is
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Nomenclature

A. Sets and Indices
A Set of transmission lines
G Set of all generators
Gi Set of electrical power generators at bus i
N Set of locations (buses)
T Length of planning horizon
g Indices of generators
i,  j Indices of buses
t  Time period
� The set of all possible scenarios
� Indices of scenarios

B. Parameters
SUgt start-up cost of unit g in period t
SDgt shut-down cost of unit g in period t
Prob� probability of scenario �
Lg minimum ON time of unit g
lg minimum OFF time of unit g
Pmax

g maximum power generation of unit g

Pmin
g minimum power generation of unit g

RUg ramping up limit of unit g
RDg ramping down limit of unit g
RSit spinning reserve requirement at bus i in period t
Smax

g maximum spinning reserve of unit g

R�
it

renewable energy at bus i in period t of scenario �
Dit forecasted demand at bus i in period t
E�

it
price elasticity at bus i in period t of scenario �

�i storage efficiency at bus i
Bijt susceptance in branch i – j in period t;
� confidence level
ˇ�

it
voltage angle at bus i

� maximum load-shedding loss allowance
˛, � price velocity indicators
�i maximum storage capacity at bus i

C. Variables
ugt commitment decision of unit g at period t
vgt startup action of unit g at period t
wgt shutdown action of unit g at period t

p�
gt power generation of unit g in period t of scenario �

s�
gt spinning reserve of unit g in period t of scenario �

f �
ijt

power transmission from bus i to bus j in period t of
scenario �

q�
it

electricity price at bus i in period t of scenario �

r�
it

remaining power at bus i in period t of scenario �

v�
it

power saving at bus i in period t of scenario �

x�
it

renewable energy dispatch amount at bus i in period
t of scenario �

y�
it

shifted demand at bus i in period t of scenario �
	t value-at-risk at period t (VaR)

�

t the loss exceeding VaR in period t of scenario �

introduced as time-dependent multi-period storage constraints.
Senjyu et al. [14] discuss the thermal UC problem consisting of
generalized energy storage systems (ESS) and solve the model by
extended priority list. Daneshi and Srivastva [8] develop enhanced
security-constrained UC with wind generation and CAES, and con-
duct the comprehensive analysis of CAES on economics, peak-load
shaving and wind curtailment. Except to the function of peak

shaving provided by ESS, the primary reserve requirements and
their combined provision are investigated via economic assessment
[15].

On the other hand, demand response mechanisms have been
proposed and practiced for several years to encourage consumers
to reduce power consumption during on-peak hours and increase
uses at off-peak hours or the times of high production. Since there
exist unavoidable forecast errors for day-ahead wind resource, this
increases re-dispatch costs and loss of load events. Sioshansi [16]
discusses the introduction of demand response by real-time pri-
cing in order to mitigate these wind integration costs. Zhao and
Zeng [17] also proposed a two-stage robust optimization model
for UC with DR in the integration of wind energy and solved the
problem by a novel cutting plane algorithm. On one hand, the
effect of demand response in an isolated system with wind inte-
gration has been studied in [18]. DR-based reserve capacity has
also been proved to be an effective mechanism to accommodate
the uncertainty of wind generation, which has been studied by the
extension of security-constrained unit commitment model with DR
and performing simulation tests [19]. On the other hand, determi-
nistic and stochastic security approaches were compared for energy
and spinning reserve scheduling in presence of DR, where stochas-
tic approach was shown to achieve a lower system cost and load
shedding [20]. Later, Madaeni and Sioshansi [21] examined the
effectiveness of stochastic programming and demand response on
the reductions of wind uncertainty costs. Their empirical studies
showed a stochastic program with DR brings more benefits signifi-
cantly. Of the many modeling approaches of demand response, the
method based on price elasticity matrix (PEM) will be utilized in our
study. Although there are possibly some forecast errors existing in
PEM, it is relatively easy to forecast loads which follow a specific
end-user type. It is a good approximation for demand response and
has been studied in [22]. The other benefit of this method offers easy
incorporation with optimization models and produces sufficient
results as well.

To limit the likelihood of load losses due to uncertainties,
risk management has been merging to daily operations of power
generation. Chance-constrained optimization models have been
developed to deal with uncertain wind power output [23], uncer-
tain load [24] and transmission network expansion planning [25].
Chance constraints are equivalent to constraints that bound the
risk measure value-at-risk (VaR). Another tighter risk measure
defined upon VaR is conditional value-at-risk (CVaR). As popular
risk measures, VaR and CVaR have been widely used in financial
risk management [26–28]. Compared to VaR based models, CVaR
based models are less computationally demanding due to the fact
that modeling CVaR only requires linear constraints and continuous
variables. We thus introduce CVaR to our SUC model to maintain
system reliability at various levels.

Compared to the recent works of stochastic programming
approaches on unit commitment problems (e.g., [29–31,21]), the
main contributions of this study are summarized as follow:

1. A comprehensive two-stage stochastic mixed intger program-
ming model for unit commitment with risk constraints based on
CVaR is developed to control risk of loss of loads while includ-
ing non-generation resources. The proposed optimization model
helps to satisfy real-time demands and minimize the total oper-
ation costs with the support of non-generation resources. The
model can help balance between expected cost and risks of load
losses.

2. A modified Benders’ decomposition algorithm is applied to solve
for this CVaR-based model and reduce computation times.

3. Numerical experiments are conducted to find out optimal unit
commitment solutions and compare the effects of the risk
resilience of non-generation resources on power generation.
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