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h i g h l i g h t s

< Inward solidification model of a sphere for a single encapsulated phase change material particle is built.
< An effective numerical method is developed and validated by an iterative analytical series solution.
< The evolution of solidification and the moving front surface are predicted for different size particles.
< The model explains the rapid solidification of microencapsulated Paraffin particles under small Stefan numbers.
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a b s t r a c t

The melting or solidification behavior of a single particle with encapsulated phase change material (PCM)
is essential in analyzing the heat transfer effect of encapsulated PCM suspension slurries, particularly in
mini-channels or high flow speed applications. Accordingly, the heat diffusion equation of a sphere with
a liquidesolid moving interface model is used to analyze the solidification of PCM within a single
encapsulated particle. The nonlinearities associated with a moving boundary problem are simplified via
the transformation of dimensionless variables of equations. A technique which combines Explicit Euler
method and Implicit Euler method in finite difference scheme is thus developed to solve the Stefan
problem. The result is compared with an iterative analytical series solution and a good agreement is
obtained. The evolution of solidification and the moving front surface are predicted for different size
particles with core paraffin encapsulated, and the solidified volume fraction as a function of time is also
determined.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Latent heat storage is particularly attractive, since it provides
a high energy storage density and can store the energy as the latent
heat of fusion at a constant temperature (phase change temperature
of the corresponding PCM). Notably, the use of PCMs for thermal
energy storage in solar heating system has received considerable
attention. The heat storage capacities of different PCMs were
investigated theoretically and experimentally in a cylindrical
energy storage tank linked to a solar powered heat pump system by
Esen et al. [1e3]. In recent years the micro or even nanoscale
encapsulated PCMs can be produced in a large quantity thanks to
the rapid development of the manufacturing techniques. This can

not only thoroughly solve the leakage problem (occurred in solid/
liquid phase change of PCMs), but also the shell of the micro/nano-
capsules can provide the protection of PCMs by avoiding the direct
contact between the PCMs and heat transfer media.

For microencapsulated PCM slurries, the heat transfer or storage
performance depends on the heat release or absorption rate per
particle and the particle concentration (the number of particles per
unit volume of the slurry) [4]. The factors influencing the heat
transfer for a single particle are the liquidesolid interface location
and the phase change rate. Moreover the microencapsulated PCM
slurries are often used in mini-channels for cooling purpose, but it
is unknownwhether or not the melting process of the particles has
been completed at the channel exit for such a short distance,
particularly at a high flow speed. Therefore it is important to study
the mechanism of heat transfer in phase change stage of a single
encapsulated PCM particle.

Among various shapes of encapsulated particles, spherical
particles are the most preferred as it can store a larger amount of
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energy due to a more favorable ratio of volume to heat transfer
surface area [5]. For this reason the heat conduction or diffusion
equation of a sphere with a liquidesolid moving interface model is
investigated in this paper, and amethod is proposed to describe the
solidification process (Stefan problem) of a single encapsulated
PCM particle.

For solidificationwithin a sphere containing molten PCM inside,
solid transformation starts from the outer shell due to the wall
temperature being below the freezing point, and develops inward
to the center until all the liquid changes into solid [5,6]. Accordingly
the solidification of a PCM particle can be simply described by
inward solidification model of a sphere. However, it is difficult to
analytically calculate the inward solidification of a sphere due to
the moving liquidesolid interface existed in phase change stage. In
the previous research, Shih et al. [7,8] obtained an analytical solu-
tion for the solidification of cylinders and spheres with constant
heat transfer coefficient by using an analytical iteration technique.
The success of this method lies in transforming the diffusion
equation from cylindrical coordinates or spherical coordinates into
a form of rectangular configuration with position dependent coef-
ficients. Moreover, perturbation approach has been applied to
obtain the analytical solution for spherical solidification. Due to the
divergence of the regular perturbation solution when the freezing
front approaches to the center, the method of strained coordinates
was used by Pedroso and Domoto [9]. The treatment which
assumed that the parameter b, the ratio of the latent heat to the
sensible heat of the substance is large, was adopted in the analytical
solution by Riley et al. [10]. Another semi-analytical technique
which simplifies the non-linearity associated with the moving
boundary and enables an iterative analytic series solution was
proposed by Davis and Hill [11] and the technique was further
developed in Ref. [12] to give successive estimates of the time for
complete solidification of a sphere.

However, the analytical solution is not able to solve more
complicated thermophysical problems which are sometimes
encountered. Therefore, the numerical methods are also appro-
priate for solving the Stefan problems. The numericalmethodswere
reported to effectivelywork out the general one-dimensional Stefan
problems in Refs. [13e19]. At first, the Explicit FD method was used
for the Stefan problem with time-dependent boundary conditions
and compared with the nodal integral method. The high accuracy
and agreement can be obtained for both solutions [13]. The variable
space grid method based on finite differences was further used by

Savovic and Caldwell [14] and the result exhibited good agreement
with the exact solution. In addition, the finite difference was also
used to solve one-dimensional Stefan problem with periodic
boundary conditions [15]. The weak or Galerkin formulation of the
initial-boundary value problem was used to derive a system of
initial value problems in ordinary differential equations by Asai-
thambi in a one-dimensional Stefan problem [18,19]. Furthermore,
the full two-phase Stefan problem was considered by applying
a small-time perturbation scheme and by presenting numerical
results calculated using an enthalpy method [20]. The method of
matched asymptotic expansions and a finite difference scheme
based on the enthalpy method were used by Tabakova et al. for the
freezing of a supercooled spherical droplet [21].

In this paper, a convenient and feasible technique which
combines the numerical calculation and the transformation of
dimensionless variables in equations is developed. The purpose of
variables transformation is to simplify the moving boundary
problem to one with a fixed boundary for the diffusion equation of
a sphere. Based on the transformed dimensionless variables and
the new boundary conditions, a finite difference method is devel-
oped and the result is compared with the iterative analytical series
solution [11]. The evolution of the solidification and the tempera-
ture profile in the solidified region is also predicted and discussed.
In addition, the solidification of different-sized particles with a core
of encapsulated paraffin PCM is analyzed in details.

2. The spherical solidification model

As shown in Fig. 1, the radius of the sphere is Rmax
* . During the

solidification stage, the two phases including the liquid and solid
coexist in this area. Conduction in solid is the sole transport

Nomenclature

T* temperature of solid
t* time
r* radial coordinate of solid region (R* < r* < Rmax

* )
T*
b boundary temperature of a particle

T*
f freezing temperature

R* position of liquidesolid interface
k thermal conductivity of solid
c specific heat capacity of solid
L latent heat of PCM
T dimensionless temperature of solid
r dimensionless radial coordinate of solid region
R dimensionless position of liquidesolid interface
t dimensionless t
u(r,t) new defined variable from T(r,t)
4ðx; yÞ new transformed variable from u(r,t)

x new defined variable from dimensionless radial
variables

y new defined variable to represent R
Z variable in finite difference solution
cof1, cof2, cof3 intermediate variable in discretized equation of

Implicit Euler method
ai, bi, ci coefficients in discretized equations of Implicit Euler

method
An(x) coefficients in the expression of the iterative analytic

series solution
f1(d), 6ðdÞ, A11(x), A12(x),C12(x) variables in the iterative analytic

series solution

Greek symbols
a thermal diffusivity in the solid phase, a ¼ k/rc
r density of solid
z Stefan number
g, s parameters in the iterative analytic series solution

*R

*r *
maxR

Solidified region 

Liquid region 

Fig. 1. Inward solidification of a sphere.
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