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a  b  s  t  r  a  c  t

This  paper  contributes  toward  the  establishment  of a  formal  analysis  method  of control  system  equations
solved  through  fixed-point  iterations.  The  success  of  fixed-point  iterations  relies  on  contraction  proper-
ties  of  the  function  to be  iterated.  A  convergence  criterion  is  presented  and  accuracy  is  not  sacrificed  over
gain  in  computational  performance.

The  presented  algorithms  are  illustrated  in  EMTP-RV  for  practical  control  systems  used  in  wind  power
generation  and  for a user  defined  model  case.  Limitations  and  performances  are  discussed  in relation  to
the Newton  method.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

AN iterative Newton method for the solution of control sys-
tem equations in electromagnetic transient (EMT) type simulation
methods has been proposed in [1]. Although it represents a robust
and systematic approach, there are some feedback based control
systems that can be also solved using the much simpler and some-
times more efficient fixed-point (FP) method. The efficiency level of
the FP method can be very high since it only sequentially evaluates
the control blocks and does not require time-consuming lineariza-
tion procedures and matrix formulations required in the Newton
method. The difficulty is in the determination of whether or not
the FP method can converge for a given case, before it is actually
undertaken.

Moreover, in some classes of control system equations, the
model loops may  lead to algebraic constraints. In such cases,
the basic sequential evaluation of blocks is not applicable. Dif-
ferent approaches can be undertaken to reformulate models in
order to apply a sequential solution. The approach proposed in [2]
consists of breaking algebraic loops. This approach is acceptable
when the loop is artificial, i.e.  when it can be eliminated without
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compromising the physical behavior of the model. Specific tools are
dedicated to achieve such elimination [3]. However, some cases
require algebraic constraints that cannot be easily eliminated. A
possible solution consists in re-organizing blocks to eliminate alge-
braic loops while still maintaining functionality, but as pointed out
in [3], this may  become prohibitively difficult.

Loop-breaking is valid for some classes of control system equa-
tions, but it was  proven that it may  fail for others, for instance, when
nonlinear (NL) blocks appear in the feedback path [1]. A highly accu-
rate algorithm should handle algebraic loops by solving a set of
NL control equations simultaneously while maintaining computa-
tional performance, but this is not usually the case and iterative
solutions may  require longer computing times.

It is proposed in this paper to analyze control system equations
to formally display the contractive properties of loop paths. The
success of the FP method relies on contraction properties of the
iterated function [4–7]. It is proposed, in this paper, to study the
iterated functions by analyzing the Jacobian matrix in association
with the isolated variables representing the feedback loop path.
Graph theory techniques are used for that purpose. The consider-
ation of such properties may  widen the usage of FP methods. When
the convergence criterion is established, solution accuracy is not
sacrificed over reduction in computing time. Additional iterations
permit achieving convergence for a predefined tolerance.

This paper contributes to the establishment of a formal analysis
method of control system equations which permits safe usage of
the FP method.
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The analysis proposed in this paper is illustrated for the sim-
ulation of practical control systems in the study of power system
transients. The test cases are for wind power generation and user
defined model equations for an electrical machine.

2. Theoretical background

The literature on theoretical and fundamental aspects related to
the FP method is abundant [4]. We  will thus restrict our review to
the solution of the systems of equations of the form:

e = �(e) (1)

where � is a vector function and e is the vector of unknowns. A
solution ê of (1) is said to be a FP of �, since � leaves ê invari-
ant. The classical approach starts by setting an initial vector e0 and
computing e1 = �(e0) to continue iteratively (iteration counter is
k) with successive evaluations ek+1 = �(ek) until convergence. The
contraction mapping theorem gives a sufficient condition under
which there is a fixed point ê of (1). For more details, see, among
others [4–6]. Formally a vector-valued function � is a contraction
at a point ê if a constant � exists, with 0 ≤ � < 1, in such a way  that

‖�(e) − �(ê)‖ < �‖e − ê‖, (2)

for all e sufficiently close to ê and where ||.|| is a specific norm
to be defined. The Euclidean norm can be used for control system
simulations in power systems. Also, some assumptions are made
including at least, that all elements of � are piecewise-continuous
and, also, that the derivatives of the control block functions are well
defined and are not infinite. Similar assumptions are made for the
Newton-like methods [6,8].

The following condition of contraction [7] is used in this paper:

‖�′(ê)‖spectral < 1 (3)

where ‖ . ‖ spectral is the spectral (induced) norm and �′ is the Jaco-
bian matrix of �. The induced spectral norm of a matrix A is the
square root of the largest eigenvalue of the matrix resulting from
ATA.

The vector-valued � is a mapping of vector-valued, possibly
nonlinear functions, defined through algebraic equations repre-
senting a discrete dynamical system. EMT-type simulations are
based on the discretization of control system blocks (using the
trapezoidal rule, for example) and at a given time-step, all terms
including history, inputs and outputs of models can be expressed
as (1).

3. Fixed-point iterations: formulation and applications

3.1. Functions in feedback paths

Simultaneous systems of equations can be represented as feed-
back equations. Basically, a proper cutset is introduced on the graph
of control equations in such a way that all cycles are eliminated.
The set of variables pertaining to that cutset represent the feed-
back variables �̂: the cycles which were removed by cutting the
feedback variables represented by the feedback paths on the graph
of the control system. The all-zero eigenvalues condition for the
adjacency matrix of the graph can be applied for testing the elim-
ination of all cycles [9,10]. This approach provides vector-valued
functions G and � for formulating the objective function � in the
application of the Newton method. For a generic case:

e = �(u, y) (4)

y = G(e) (5)
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Fig. 1. Phase-locked Loop (PLL) control system from [1].

where u holds the vector of independent inputs, y is found using
the application sequence G of the control diagram paths on e and
the Newton solution is based on:

� = e − �(u, y) = 0 (6)

where e holds for feedback variables associated with the cutset �̂.
For illustration purposes, let us consider a Phase-Locked Loop

(PLL) control studied in [1] and presented in Fig. 1. There is a set
of two  feedback functions {f3, f4} in �̂. The equivalent system of
equation is consequently given by:

e1 = u − G1(e1, e2)

e2 = 0 + G2(e1, e2)
(7)

where the application sequences (sequential evaluations) are
defined by:

G1(e) = f16,15,14,13,12,10,9,8,7,6,5(e)

G2(e) = f11,10,9,8,7,6,5(e)
(8)

and e = [e1, e2] is the vector of new variables. The FP iterations are
now defined as:

ek+1 = �(G(ek)) (9)

Successive FP iterations on (9) will converge for some classes of
control systems complying with the contraction mapping theorem
recalled in section II. The convergence criterion adopted from [13]
is given by:∣∣∣∣ ‖�k‖ − ‖�k+1‖

‖�k‖

∣∣∣∣ ≤ ˚tol (10)

where �tol is a relative tolerance on the objective function and ||.||
is the Euclidian norm. The objective function (6) is rewritten as:

�k+1 = ek+1 − �(G(ek)) (11)

3.2. Application cases

The following simulations have been performed using the
EMTP-RV [14] engine with the added functionalities described in
this paper.

3.2.1. Phase-Locked Loop
The method proposed in the previous section is applied to the

PLL presented in Fig. 1. The contraction condition is respected for
a sufficiently small time-step (�t  = 1 �s) and the found solution
is identical to the one from the Newton method using the same
�t. For this particular test with a sine input having a jump in
amplitude value at 125 ms,  when the time-step increases, the FP
method performs poorly especially near the jump. In fact, numer-
ical derivatives of nonlinear functions of blocks (PROD, sine and
cosine) and the discretization by the trapezoidal rule (applied to
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