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a  b  s  t  r  a  c  t

The  problem  of reconfiguration  of distribution  systems  considering  the  presence  of  distributed  generation
is  modeled  as a mixed-integer  linear  programming  (MILP)  problem  in  this  paper.  The  demands  of the
electric  distribution  system  are  modeled  through  linear  approximations  in  terms  of  real  and  imaginary
parts  of  the  voltage,  taking  into  account  typical  operating  conditions  of  the  electric  distribution  system.
The  use  of  an  MILP  formulation  has the  following  benefits:  (a)  a  robust  mathematical  model  that  is
equivalent  to the  mixed-integer  non-linear  programming  model;  (b)  an  efficient  computational  behavior
with  exiting  MILP  solvers;  and (c)  guarantees  convergence  to  optimality  using  classical  optimization
techniques.  Results  from  one  test  system  and  two  real  systems  show  the  excellent  performance  of  the
proposed  methodology  compared  with  conventional  methods.

Crown Copyright ©  2012 Published by Elsevier B.V. All rights reserved.

1. Introduction

The reconfiguration of the distribution system (RDS) is one
of the classic optimization problems in the operation of electri-
cal distribution systems (EDS). In addressing this problem, the
main objective is to find the best radial topology in order to
obtain minimum active power losses, meet the energy demand,
and maintain system reliability. This procedure can permit an effi-
cient and reliable operation. Due to various technical reasons, the
EDS must operate with a radial topology (even though it has a
mesh structure), the two most important factors being: (a) facil-
itation coordination and protection; and (b) achieving a reduction
of short-circuit current in EDS. The RDS is a problem related to the
operation planning of EDS and can be modeled as a highly complex
mixed-integer nonlinear programming (MINLP) problem [1].

Some works presented in the specialized literature propose
mixed-integer linear and quadratic programming models for the
RDS problem. In [2],  the authors present a linear model for the RDS
problem using the so-called transportation method and a compar-
ison with heuristics methods is made. In [3],  the RDS problem is
formulated as a minimum cost network flow problem and is solved
using a modified simplex method, ignoring the branch capacity lim-
its. In [4],  the authors extend the method in [3] with the presence of
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distributed generation. In [5],  two methodologies are used to solve
the RDS problem. The first methodology models the RDS problem as
a mixed-integer linear programming problem (due to the lineariza-
tion of the objective function and constraints) and solves it using a
standard optimization package. In the second technique, the same
problem is modeled as a mixed-integer nonlinear problem and is
solved by means of a genetic algorithm. The paper concludes that
the results of both methodologies are similar for the tests com-
pleted. An extension from [5] is presented in [6],  in which the RDS
problem is modeled as a mixed-integer quadratic programming
problem. A mixed-integer conic programming formulation for the
RDS problem is shown in [7].

Several optimization techniques have been offered in the liter-
ature to solve the RDS problem. These techniques can be separated
into two major groups: (1) exact techniques and (2) heuristic and
metaheuristic techniques. The exact techniques, such as branch
and bound algorithms, were used only for relaxed models [1,5,6].
However, more recently, heuristics and metaheuristics have been
successfully applied with complete models. Simulated anneal-
ing [8,9], ant colony [10,11], particle swarm optimization [12],
genetic algorithm [13–15] and tabu search algorithms (TSA) [16,17]
are among the metaheuristic techniques used to solve the RDS
problem. Constructive heuristic algorithms, as seen in [18–22],
are among the heuristic algorithms used to solve the RDS prob-
lem.

In this paper, the problem of reconfiguration of electric distribu-
tion systems considering the presence of distributed generation is
modeled as a mixed-integer linear programming (MILP) problem.
Linearizations were made to represent adequately the steady-state
operation of the EDS considering the behavior of the constant
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power type load. The integer nature of the decision variables rep-
resents the state of the branches that can be opened or closed in
the EDS. The objective is to minimize the active power losses sub-
ject to operational and physical constraints. The proposed model
was tested using one test system of 69 nodes and two  real sys-
tems of 136 and 417 nodes. In order to validate the approximations
performed, a steady-state operation point was compared with that
obtained using the single phase load flow sweep method.

The main contributions of this paper are as follows:

1. A novel model for the steady-state operation of a EDS through
the use of linear expressions.

2. A novel MINLP model for the RDS problem where the radiality
constraints are properly considered in the mathematical model.
Additionally, an extension of this model considering the dis-
tributed generation (DG) operation is presented.

3. A MILP formulation for the RDS problem considering DG has
the following benefits: (a) a robust mathematical model that is
equivalent to the MINLP model; (b) an efficient computational
behavior with exiting MILP solvers; and (c) guarantees conver-
gence to optimality using classical optimization techniques.

2. A mixed-integer nonlinear model for the problem of
reconfiguration of EDS

In order to model the problem of reconfiguration of EDS, the
following assumptions are made:

1. The loads of EDS are modeled as constant power, constant cur-
rent and constant impedance types.

2. The steady-state operation of EDS is represented in terms of the
real and imaginary parts of the voltage and current flow.

3. The three phase EDS is considered symmetrical and then
modeled through their positive sequence network.

The RDS problem can be modeled as a mixed-integer nonlinear
programming problem as shown in (1)–(17).
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The objective function of the RDS problem is the minimization
of the active power losses of an EDS, as shown in (1).  Note that the
real part of the current flow of branch ij is represented by two  posi-
tive variables Ire+

ij
and Ire−

ij
, according to the direction of the current

flow; similarly, variables Iim+
ij

and Iim−
ij

are used for the imaginary
part of the current flow for branch ij. Constraints (2) and (3) rep-
resent respectively the balance of real and imaginary parts of the
nodal current at node i (see Fig. 1). Constraints (4) and (5) repre-
sent, respectively, the real and imaginary parts of the voltage drop
in branch ij. The real and imaginary parts of the currents demanded
by the loads are determined by (6) and (7),  where PDi and QDi varies
according to the voltage magnitude at node i, as shown in Appendix
A, to represent the loads as constant power, constant current and
constant impedance loads. Constraints (8) and (9) represent the
current flow capacity of each branch and the limits of the voltage
magnitude, respectively.

The state of the branch ij is determined by the binary decision
variables y+

ij
and y−

ij
. If y+

ij
or y−

ij
are equal 1, then the branch ij is in

operation and if both y+
ij

and y−
ij

are zero then the branch ij is out of
operation. Despite the fact that the state of a circuit can be repre-
sented using only a binary variable, the use of two  binary variables
makes it possible to limit the direction of the real part of the cur-
rent flow in the circuit (one binary variable is associated with the
forward direction, while the other is associated with the backward
direction), which yields better performance. Constraints (10) and
(11) state that auxiliary variables wre

ij
and wim

ij
are zero if branch ij

is in operation. Constants wre
ij and wim

ij must be calculated to give a
sufficient degree of freedom for wre
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and wim
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in order to satisfy (4)

and (5) where branch ij is out of operation. Constraints (12) and (13)
define the direction of the real part of the current flows in function
of the binary variables y+

ij
and y−
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, respectively; and constraint (14)

ensures that duplication of current flow directions (forward and
backward) is not allowed. Note that if y+
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= 1, then y−
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= 0, Ire−
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= 0,
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is nonzero and the current flow direction is forward. If y−
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= 1,

then y+
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is backward. Note that Iij in (12) and (13) represents the degree
of freedom of the variables Ire+
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when y+
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respectively.
Constraint (15), combined with (2) and (3),  is used to obtain a

radial topology for the RDS problem, as shown in [23]. The condition
of non-negativity for the variables Iim+

ij
and Iim−

ij
is stated in (16). The

binary nature of the decision variables is represented by (17), and
a feasible operation solution for the EDS depends on their value.
The remaining variables represent the operating state of a feasible
solution. For a feasible investment proposal, defined through the
specified values of y+

ij
and y−

ij
, several feasible operation states are

possible. Given that Rij is positive in value, the objective function
(1) is a convex quadratic function. Constraints (2)–(5) and (10)–(16)
are linear, while (6)–(9) are non-linear. With the aim of using a
commercial solver, it is desirable to obtain a linear equivalent for
(6)–(9) and for the objective function (1).
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