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a b s t r a c t

A novel theoretical model for solving the cavities in axisymmetric supercavitating flow past a slender
conical body in subsonic fluid has been established in the present paper based on the slender body theory.
The fluid compressibility has been taken into consideration in the present model. The nonlinear integral
differential equation is derived for solving subsonic supercavitating flow. The numerical discrete method
and the iterative process to solve the equation are presented in this paper. The critical Mach number
are obtained to describe the subsonic flow. The results of supercavity shapes and the hydrodynamic
coefficients obtained by the present theoretical model are compared with the results of other literatures,
which verifies the present model have theoretical accuracy and broad application. Finally we discuss the
compressibility effects on cavity shape, surface pressure distribution and drag coefficient in the subsonic
liquid flow.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

Supercavitating vehicles can achieve high-speed in comparison
with conventional vehicles for the reason that supercavitation can
reduce the friction drag significantly. Much effort has been made
in the past decades to study supercavitation around a moving
underwater vehicle. The high-speed supercavitating projected has
been focused attention on. Comprehensive reviews of this subject
have been given in the literature [1–4]. These reviews outline the
significant progress in the development of theoretical research and
experimental research on high-speed supercavitating.

In the past, many experiments have been conducted to study
supercavitation in high-speed flow. Yu. Yakimov [5] has carried
out some experiments whose speeds were up to 1000 m/s. High
speed experiments in the speed range of 500 m/s–1400 m/s were
performed by Vlasenko [6]. Vlasenko’s experiments results show
that the cavity aspect ratio which is the ratio of half cavity length
to cavity middle section diameter is very large. The cavity aspect
ratio for speed range of 500 m/s–1400 m/s is 70–200 while the
cavity aspect ratio is 10–20 when the cavitation number is larger
than 0.01. The water compressibility is shown in photographs near
the cavitator with the phenomenon that the local water density
is changed which results in the distortion of the scale grid lines
due to the water compressibility effect. Kirschner [7] stated the
experiment program where the underwater Mach number can
exceed unit and experiments speeds up to 1549m/swith theMach

* Corresponding author.
E-mail address: duyanfeng_hit@163.com (Y. Du).

number 1.03 were achieved. These high-speed under water pro-
jectile experiments showed that the projectile travels along nearly
straight line and the cavitation number increases and the cavity
size decreases with time as a result of the projectile deceleration.
When the underwater projectile speed is very high, thewater com-
pressibility effect on the supercavity cannot be ignored. Besides
the experiments method, the computational fluid dynamics (CFD)
methods and the theoreticalmethods are used to investigatewater
compressibility effect. Goncalves et al. [8] used the CFD numerical
simulation methods to investigate cavitating flows by taking the
vapor phase and liquid phase compressibility into consideration.
The pure phase equation of state and the mixture equation of
statewere presented and the implicit preconditioned compressible
RANS solver was used to complete the numerical simulation in [8].
The steady simulation results and unsteady simulation results for
global and local cavitation flows analysis are presented by using
the compressible wall functions associated with the SST model to
model turbulence by Goncalves [9]. Then Goncalves [10] focused
on the local compressibility effects on turbulence and described
the unsteady behavior of cavitywith shedding. Schmidt [11] inves-
tigated the cavitating flow through high-speed injection nozzles
using the mixture equation of state and Hybrid solver. Saurel
et al. [12] introduced a second order Eulerian numerical method
to simulate the compressible multifluid flows which allows an
arbitrary number of interfaces and very high density ratios. In the
past years, many researchers have developed a lot of theoretical
methods to investigate the water compressibility effect on the
cavity and projectile at high speed underwater motion. Tetsuo
et al. [13,14] presented a method to study the supercavitating
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wedge in the subsonic flow based on local linearization and made
a comparison with the uniform linearization. Their results showed
that the method made a good performance. Chou [15] developed
a theory to solve the nonlinear integral differential equation for
supercavitating flow based on slender body theory and used it to
predict axisymmetric cavities in incompressible flow. Serebryakov
[16–18] studied supercavitation in incompressible and compress-
ible flow using asymptotic method. Kuria et al. [19] solved this
problem using Chou’s theory by applying modified Chebyshev
polynomials. Varghese et al. [20] extended Chou’s theory and used
it to solve cavity shape in subsonic flow. Results of their work
showed that the effects of Mach number on cavity shape and sur-
face pressure were roughly opposite to cavitation number effects.
Several slender body models comparisons for solving the axisym-
metric cavities is present in [20]. Kulkarni et al. [21] and Ohtani
et al. [22] have also studied the supercavitation in incompressible
flow. Zhang et al. [23] took the first-order approximate solution of
cavity shape as the initial solution to start iteration and adopted
Riabouchinsky closure based on Varghese’s method in subsonic
flow. Their results showed good agreement with those obtained
by asymptotic method.

The objective of this paper is to investigate the fluid compress-
ibility effect on the cavity shape and the body surface pressure
when the underwater vehicle reaches very high speed in the
subsonic flow. We propose a novel theoretical model for solving
the cavities in axisymmetric flows past a slender conical body in
subsonic fluid based on the slender body theory and take account
of the fluid compressibility effect in the present paper. A nonlinear
integral differential equation is obtained for solving the cavity
shape and the body surface pressure. This equation is solved by a
numerical discrete scheme and an iterative process. Chou’s initial
trial solution [15] is extended to the subsonic flow. The critical
Mach number is calculated to describe the subsonic flow. The su-
percavity shapes and hydrodynamic coefficients in incompressible
and compressible fluid are obtained by the present theoretical
model and compared to the results of other literatures. The com-
pressibility effects on cavity shape, surface pressure distribution
and drag coefficient are discussed in the subsonic liquid flow.

2. Mathematical problems

2.1. Governing equation

In order to investigate the cavity behavior when an underwater
vehicle reaches very high speed in subsonic flow, a cone-cavity
system is introduced here. The cone-cavity system is shown in
Fig. 1, and the irrotational and ideal compressible flow is assumed.
Let us establish a cylindrical coordinate system (x, r) to describe
the cone-cavity system with x along the cone-cavity axis and r
perpendicular to x as shown in Fig. 1. The origin of this coordinate
system is at the cone nose. The cone and the cavity are axisym-
metric, and a conical cavity closure is assumed. The freestream
velocity is denoted by u∞ and the freestream pressure is denoted
by p∞. The cone length is Lb, the cavity length is Lc , and the total
length is L. We now normalize all length x, r by Lb, all velocity u,
v by u∞, and velocity potential by u∞Lb. After normalization, The
cone length is 1, the cavity length is lc , and the total length is l. θ
is the half cone angle. The cone-cavity is defined by r = R(x), and
Rmax is the maximum of R (x). R (x) = rb(x) = x tanθ defines the cone
radius and R (x) = Rc(x) defines the cavity. The cavity starts at x = 1
and at this point the following boundary conditions are assumed:
rb(1) = Rc(1), drb(1)/dx = dRc(1)/dx. The symmetrical Riabushisky
scheme for the back of cavity is adopted here.

Assuming ϕ is the perturbation velocity potential of the flow
past the cone, the axial component of the perturbation velocity is
u = ∂ϕ/∂x and the radial component of the perturbation velocity

Fig. 1. Slender conical body and supercavity.

is v = ∂ϕ/∂r. Assuming δ = Rmax/l, the slender body theory shows
that u = O(δ2lnδ). The governing equation for the perturbation
velocity potential in the subsonic flow is given by:
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where β =
√
1 − Ma2

∞
and Ma∞ = u∞/a∞. Ma∞ is the Mach

number in the freestream and Ma∞ is smaller than 1 for the
subsonic flow. a∞ is the sound speed in the freestream. The gov-
erning equation for the perturbation velocity potential is solved by
distributing the source strength f (x) per unit length on the axis x
from x = 0 to x = l. According to Laitone [24], the slender body
theory is applied to determine the source strength f (x). We have
the source strength f (x) = βS ’, where S ’ = dS/dx and S = πR2. S
represents the cross-sectional area of the cone-cavity. The solution
of Eq. (1) is given to the first order as:
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The axial component and the radial component of the perturbation
velocity can be written as:
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2.2. The nonlinear integral differential equation

For water, the Tait’s state equation is given by:
p + B
ρκ

=
p∞ + B

ρκ
∞

(4)

where B = 2.98×108 Pa, κ = 7.15. p and ρ are the local pressure
and fluid density respectively in the flow field. ρ∞ is the fluid
density in the freestream flow. The local sound speed a in the
flow past cone satisfies a2 = ∂p/∂ρ = κ(p +B)/ρ. And the sound
speed a∞ in the freestream satisfies a∞

2
= κ(p∞+B)/ρ∞. The

compressible Bernoulli’s equation for the flow past cone is:
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where q2 is the total speed in the local flow field. The total speed
in the local flow field q2 satisfies the equation that q2 = (1+u) 2+v2
≈ 1+2u +v2. After dividing both sides of Eq. (5) by the sound speed
in the freestream and some manipulation, we have(
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