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a b s t r a c t

In this article the Homann stagnation-point flow of a micropolar fluid over a spiraling disk is considered.
A spiraling motion is produced due to uniform rotation and linear radial stretching of the disk. The
coupled ordinary differential equations are obtained through the similarity reduction of the governing
flow equations ofmicropolar fluid. A numerical technique known as the shootingmethod is implemented
for obtaining the numerical results. Important features of the flow are investigated for various values of
the spiral angle, spiraling parameter and material parameters.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

Due to numerous practical applications in aeronautical science
and other branches of engineering such as thermal-power gen-
eration, computer storage devices, medical equipments, gas tur-
bine rotors, rotating machinery, air cleaning machines and crystal
growth processes, the flow problem over a rotating surface is still
being given extraordinary attention by researchers. Therefore, the
current study also focuses on the boundary layer flow due to a
spiraling diskwhich combines the effects of linear radial stretching
and uniform rotation, but from a new insight unlike to the classical
Von Karman flow, that is, in the presence of microelements, which
is a hot and emerging topic in the recent literature.

Micropolar fluids belong to a class of the fluids exhibiting the
micro-rotational inertia and micro-rotational effects. These flu-
ids possess certain elegance and simplicity in their mathemati-
cal modeling which appeals the mathematicians. The micropolar
fluids can support couples of the body and couple stress. Certain
isotropic fluids, e.g. animal blood, liquid crystals consisting of
dumbbell molecules and bar-like elements containing fluids are
the examples of micropolar fluids. Other polymeric fluids and the
fluids containing the certain additives may be formulated mathe-
matically underlying micropolar fluids.

Stagnation-point flow achieved extensive importance of the
researchers working in the field since the stagnation point expe-
riences highest pressure and heat transfer. The pioneering work in
this direction was carried out by Heimenz [1]. Stuart [2] extended
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the Heimenz work by incorporating the external uniform velocity
in the viscous fluid flow. Tamada [3] highlighted the effects of
obliqueness on the stagnated region in oblique flow on the flat
surface. Garg et al. [4] analyzed the numerical simulation for a
flow of a second-grade fluid near the stagnation point. Wang [5]
analyzed the similarity solution for the flow in the stagnated region
of the Navier–Stokes equations.

A famous classical problem for rotary surfaces in fluid mechan-
ics is the swirling flow discussed by Von Karman [6]. The flow
over an infinite rotating disk having fluid at rest far away from
disk for a viscous fluid, was first investigated by Von Karman. The
Navier–Stokes equations were further transformed to a system
of nonlinear coupled ordinary differential equations by employ-
ing suitable similarity transformations. McLeod [7] discussed the
asymptotic solution of the swirling-flow. Zandbergen et al. [8,9]
discussed the analytical and numerical solution of Von Karman
flow by introducing different families of solution.

The axisymmetric flow in the vicinity a stagnation point to-
wards a flat plate was first discussed by Homann [10]. Wang [11]
studied the flow for the surface having radial stretching aligned
with or off-centered to stagnation-point of the Homann flow. Han-
nah [12] discussed the motion of fluid flowing against a rotating
disk with axial symmetry. Tifford et al. [13] made an extension
of the Hannah’s [12] work to estimate the torque on the rotating
disk. Wang [14] discussed the off-centered flow in the stagnated
region towards a rotating disk. Andersson et al. [15] drew attention
towards the flow over the rotating disk of a power-law fluid .

The flow of micropolar fluid towards a stagnation point was
obtained by Peddison et al. [16]. Ahmadi [17] discussed the self-
similar solution by the variation of thematerial coefficients. Guram
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et al. [18] calculated the flow of a micropolar fluid over a rotating
disk. Sajid et al. [19] discussed exact solutions of a micropolar fluid
for thin film flows. Mehmood et al. [20] discussed the stagnation
flow over a lubricated surface for micropolar fluid by introducing
a viscoelastic fluid as a lubricant.

RecentlyMustafa [21,22] analyzed some flowproblemsover the
stretchable rotating disk. He obtained the solution by employing
the numerical spectral method. Weidman [23] presented the stag-
nation point flow of a Newtonian fluid over a spiraling disk having
the combined effects of uniform rotationwith the radial stretching.
He discussed the flow of a viscous fluid for the Homann stagnation
flow and the Argawal stagnation flow on a spiraling disk.

In the present investigation the micropolar fluid is considered
over a spiraling disk with the linear stretching and plate rotation.
The stagnation-point, uniform rotation and radial plate stretching
plays a vital role in the flow. The flow is taken as axisymmetric due
to Homann [10].

Following Weidman [23] the present discussion is about the
case where the stagnation point, the centers of rotation and of
radial stretching are coincident for the flow of a micropolar fluid.
This leads to a situation with radial linear stretching and uniform
rotation causing the motion at the surface of the plate to form
logarithmic spirals. The angle of spiral φ is the relative angle to
the circles concentric with the axis of rotation. The cases φ = 0
represents the pure rotation and φ = 90 represents the pure radial
stretching, respectively.

2. The Homann problem formulation

Consider theHomann [10] stagnation-flow of amicropolar fluid
impinging normal to a plate rotatingwith the angular speedΩ and
radially stretching with the strain rate b. The radial and azimuthal
velocity components are u(r, 0) = br and v(r, 0) = Ωr with
anticlockwise rotation (Ω ≥ 0). The mathematical model for a
micropolar fluid in cylindrical coordinates (r , θ , z) with velocities
(u, v, w) and micro-rotations (N1,N2,N3) is given by [18]
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along with boundary conditions

u = br v = Ωr w = 0 N1 = −n
du
dz

N2 = −n
dv
dz

N3 = 0 at z = 0,
(8)

u → ar v → 0 w → −2az
N1 → 0 N2 → 0 N3 → 0 at z → ∞,

(9)

where ρ, ν and j respectively are density, kinematic viscosity and
the gyration parameter of the fluid, p is the pressure,α, β, γ , µ and
k are the material constants. Introducing the similarity variables
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where a represents strain rate having units 1/T of the Homann
stagnation-point flow. So the transformed equations are

(1 + k)f ′′′(η) + 2f (η)f ′′(η) − f ′2(η) + g2(η) − kG′(η) + 1 = 0,
(11)

(1 + k)g ′′(η) + 2f (η)g ′(η) − 2f ′(η)g(η) − kF ′(η) = 0, (12)
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associated boundary conditions are

f (0) = 0, f ′(0) = λ, g(0) = S,
F (0) = −nf ′′(0), G(0) = −ng ′(0), H(0) = 0, (17)

f ′(∞) = 1, g(∞) = 0, F (∞) = 0, G(∞) = 0, H(∞) = 0,
(18)

where the λ and S appearing in the wall boundary condition are
the stretching parameter and the rotation parameter respectively
and are defined as

λ =
b
a
, S =

Ω

a
. (19)
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