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a b s t r a c t

This paper focuses on the study of the hydrodynamic interaction between two rotating spheres in an
incompressible couple stress fluid. The two spheres are assumed to rotate steadily about the line of their
centers with different angular velocities. The general solution for the steady motion of an incompressible
couple stress fluid past an axisymmetric particle is obtained analytically in the form of an infinite series.
The principle of superposition is utilized to construct the general solution for the steady motion of a
couple stress fluid past two rotating spheres using twomoving spherical coordinate systems with origins
located at the centers of the two spheres. The boundary collocation method is employed to satisfy the
imposed boundary conditions on the spherical boundaries. The torque experienced by the fluid on each
of the spherical objects is evaluated and representednumerically through tables and graphs. The tabulated
results show that the convergence is rapid. In addition, the numerical results show that the increase in
the couple stress viscosity parameter increases the values of the normalized torque on each of the two
spheres.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

Study of the motion of fluids with microstructure attracts the
attention of many researchers to investigate due to its wide area
of applications in the fields of chemical, biological and engineering
sciences. In addition, thewell-knownNavier–Stokes theory cannot
accurately describe the correct behavior of such types of fluids
because it neglects the effects of its microstructure. Motivated by
this, Eringen introduced his theory of micropolar fluids to take
into consideration the microstructure of such fluids [1]. In the
proposed model, the motion of a micropolar fluid is described
by two independent vectors; one of them is the classical velocity
vector which describes the motion of the macro-volume elements
while the other is called microrotation vector which characterizes
the motion of the micro-volume elements. These two vectors are
satisfying conservation ofmass, balance ofmomentumandbalance
of angular momentum. In addition to these governing equations,
there are two constitutive equations namely stress tensor and cou-
ple stress tensor. There are somany research papers discussing the
motion of fluidswithmicrostructure using themodel ofmicropolar
fluids e.g. [2–6]. This is not the only model proposed to describe
the correct behavior of such types of fluid flows. Stokes introduced
another theory, namely couple stress fluids, to describe themotion

* Correspondence to:Department ofMathematics andComputer Science, Faculty
of Science, Alexandria University, Alexandria, Egypt.

E-mail address: emad.ashmawy@bau.edu.lb.

of fluids taking into consideration a size-dependent effect that is
not predicted by the classical Navier–Stokes theory [7,8]. In his
model, Stokes assumed that the fluid has no microstructure at the
kinematic level, so that the classical velocity vector determines the
kinematics of motion completely. He also assumed in his theory of
couple stress fluids that the surface of a portion of the fluidmedium
is affected on by a force distribution in addition to a moment
distribution. This implies that the constitutive equations needed in
the equation ofmotion consists of two tensors namely stress tensor
and couple stress tensor. Therefore, the motion of a couple stress
fluid is completely described by a set of two differential equations
namely; the equation of continuity and the equation of motion.
This equation of motion is similar to the Navier–Stokes equation
but with higher order [7,8].

Recently, a growing attention of researchers has been given to
the theory of couple stress fluids. The fluidmotion of a couple stress
fluid representing blood flow in an artery with mild stenosis has
been studied by Srivastava [9]. Srinivasacharya and Srikanth [10]
investigated the steady motion of a couple stress fluid through
a constricted annulus. In [11], Devakar et al. obtained the exact
solutions of Couette, Poiseuille and generalized Couette flows of
an incompressible couple stress fluid between parallel plates. Ash-
mawy [12] investigated the unsteady rotational motion of a couple
stress fluid around rotating spherical particle under the effect of
slip condition. In [13], Srinivasacharya and Rao used the couple
stress fluids model to discuss the motion of blood flow through
a bifurcated artery. Aparna et al. [14] studied the steady motion
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of a couple stress fluid past a permeable sphere. The drag force
experienced by a steady couple stress fluid flow on a spherical
particle moving in it is investigated by Ashmawy [15].

The study of the interaction between spherical particles in
an incompressible fluid flow has many practical and industrial
applications in natural, biological and industrial processes. Ex-
amples of such applications are extraction of proteins and other
macromolecules in biological and pharmaceutical procedures, sed-
imentation, rheology of suspensions, blood cells motion in arteries
or veins and water purification processes [16–18]. Motivated by
this, many researchers considered various problems of interaction
between spherical particles in fluid dynamics. Chen and Keh [17]
studied the axisymmetric motion of two spherical particles in
the Navier–Stokes theory using slip condition. Faltas et al. [19]
investigated the rotational motion of a micropolar fluid past two
rotating spheres. Snijkers et al. [20] studied the hydrodynamic
interaction between two equal spheres in a viscoelastic fluid. Ra-
diom et al. [21] examined the hydrodynamic interaction between
two Brownian spherical particles at small separations and high
frequency of thermal oscillations.

This work focuses on the study of the hydrodynamic interaction
between two rotating spheres of arbitrary sizes in an incompress-
ible couple stress fluid. The two spheres are assumed to rotate
about the line of their centers with arbitrary angular velocities.
The problem is solved analytically using two spherical systems of
coordinates with origins located at the centers of the two spheres.
The boundary collocation technique is then applied to satisfy the
boundary conditions on the spherical surfaces. The torque experi-
enced by the fluid flowon each of the spherical particles is obtained
and its numerical values are tabulated and graphed.

2. Rotation of axisymmetric particle in a couple stress fluid

Consider the slow steady motion of an incompressible couple
stress fluid past an axisymmetric body rotating about its axis of
revolution. Taking the assumption of Stokesian flow (low Reynolds
number) into consideration and assuming that body forces and
body couples are absent, the fluid flow is governed by the following
differential equations [8]

∇ ·
−→q = 0, (2.1)

η∇ × ∇ × ∇ × ∇ ×
−⇀q − µ∇ × ∇ ×

−⇀q + ∇p = 0, (2.2)

where −⇀q is the velocity vector and p is the fluid pressure at any
point. The material constant µ is the classical viscosity coefficient
and η denotes the new viscosity coefficient characterizing the
effect of couple stress fluid. If this later parameter is taken zero,
the equation of motion reduces to that of Stokes equations.

The stress tensor tij and the couple stress tensor mij proposed
by Stokes [8] are given by

tij = −p δij + 2µ dij −
1
2
eijk msk,s, (2.3)

mij = mδij + 4(η ωj,i + η′ωi,j), (2.4)

where m is one third the trace of the couple stress tensor and η′ is
the second viscosity coefficient characterizing the theory of couple
stress fluids.

The couple stress viscosity coefficients, η and η′, are satisfying
the following inequalities [8]

η ≥ 0, η ≥ η′.
In addition, the deformation rate tensor dij and the vorticity

vector ωi are defined by

dij =
1
2
(qi,j + qj,i), ωi =

1
2
eijk qk,j . (2.5)

The two constant tensors δij and eijk are, respectively, denoting the
Kronecker delta and the alternating tensor.

Let us assume that (−→e r ,
−→e θ ,

−→e ϕ) are the unit vectors along
the increasing directions of the spherical coordinates (r, θ, ϕ),
respectively. Since the fluid motion is generated by the rotation
of an axisymmetric solid of revolution about its axis of symmetry,
then the resulting fluid motion is also of axisymmetric nature.
Therefore, the velocity and vorticity vectors can be represented,
respectively, as

−→q = qϕ(r, θ )
−→e ϕ, (2.6)

⇀
ω = ωr (r, θ )

−→e r + ωθ (r, θ )
−→e θ . (2.7)

The equation of continuity (2.1) is identically satisfied by the ve-
locity vector (2.6) while the momentum equation (2.7) reduces to
∂p
∂r

=
∂p
∂θ

= 0, (2.8)

E2 (E2
− ℓ2

)
r sin θ qϕ(r, θ ) = 0, (2.9)

where

E2
=

∂2

∂r2
+

1
r2

∂2

∂θ2 −
cot θ
r2

∂

∂θ
. (2.10)

In addition,

ℓ2 = a2µ/η, (2.11)

where a is denoting the equatorial radius of the axisymmetric
body.

The regular solution of the partial differential equation (2.9)
appropriate for unbounded fluid region is found to be

qϕ(r, θ ) =

∞∑
n=1

(
Anr−n−1

+ Bnr−1/2Kn+1/2(ℓr)
)
P1
n (ζ ), (2.12)

where ζ = cos θ .
Moreover, the non-vanishing vorticity components are ob-

tained by using (2.5), (2.7) and (2.12) as

ωr (r, θ ) =
1
2

∞∑
n=1

n(n + 1)
{
Anr−n−2

+ Bnr−3/2Kn+1/2(ℓr)
}
Pn(ζ ), (2.13)

ωθ (r, θ ) =
1
2

∞∑
n=1

{
nAnr−n−2

+ Bnr−3/2 (nKn+1/2(ℓr)

+ℓrKn−1/2(ℓr)
)}

P1
n (ζ ), (2.14)

where Pn(.), P1
n (.) and Kn(.) are, respectively, Legendre polynomial

of degree n, associated Legendre polynomial of degree n and order
1, and modified Bessel function of the second kind of order n.

The tensor relation (2.4) can be used to give

mrθ (r, θ ) = 4η
∂ωθ

∂r
+ 4η′

(
1
r

∂ωr

∂θ
−

ωθ

r

)
. (2.15)

Inserting the expressions (2.12)–(2.14) into the above expression
we get the following explicit form of the tangential couple stress
component

mrθ (r, θ ) = −2
∞∑
n=1

(
Anr−n−3

{
n
(
(n + 2)η + η′

)
P1
n (ζ )

+
n2(n + 1)2η′√

1 − ζ 2
Gn+1(ζ )

}
+ Bnr−5/2

{{
n
(
(n + 2)η + η′

)
P1
n (ζ )
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