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a b s t r a c t

We consider the stationary problem of flow of a viscous compressible subsonic fluid along a flat
plate with small localized (hump-type) irregularities on the surface for large Reynolds numbers. We
obtain a formal asymptotic solution with double-deck structure of the boundary layer. We present
the results of numerical simulation of the flow in the thin boundary layer (i.e., in the near-boundary
region).

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

The double-deck structure of the boundary layer is encountered
in various problems of flow of an incompressible viscous fluid
along various surfaces with small irregularities for large Reynolds
numbers. For example, in problems of flow past a semi-infinite
plate with periodic [1,2] or localized [3] irregularities, in pipes
and channels with periodic irregularities on the walls [4], and in
problems of flow of submerged jets along a plate with localized
irregularities [5].

The double-deck structure was also found in the problem of
flow of a compressible fluid along a plate with periodic irregu-
larities [6]. The goal in this paper is to study a more ‘‘classical’’
problem, i.e., the problem of flow along a localized hump-type
irregularity on a semi-infinite plate in the case of compressible
flows. It will be shown that the solution of this problem also has
a double-deck structure of the boundary layer.

✩ The article was prepared within the framework of the Basic Research Pro-
gram at the National Research University Higher School of Economics (HSE) and
supported within the framework of a subsidy by the Russian Academic Excellence
Project ’5-100’.

E-mail address: rgaydukov@hse.ru.

Generally speaking, the double-deck structure has been dis-
covered comparatively recently. The classical solution of the flow
problems (but on other scales) is thewell-known triple-deck struc-
ture, which has been widely studied by F.T. Smith, K. Stewartson,
O.S. Ryzhov, A.I. Ruban, V.Ya Neiland, and others (see, e.g., [7–16]).
The double-deck structure was also considered in the literature for
various problems (for example, see [1–6,17,18]), but not as widely
as the triple-deck structure.

The main difference between the double-deck and triple-deck
structures consists in the following. In the double-deck structure,
the flow perturbation due to irregularities on the surface occurs in
the classical Prandtl boundary layer region and does not influence
the external flow. Hence, the problem of interaction between the
boundary-layer flow and the external flow does not appear in
case of the double-deck structure in contrast to the triple-deck
structure.

However, in contrast to the triple-deck structure (see, e.g., [10]),
the double-deck structure has not been studied in detail for com-
pressible fluids. The main goal in this paper is to generalize the
double-deck structure to the case of compressible fluids.

We consider a steady-state viscous compressible fluid flow
along a flat semi-infinite plate with small hump-type irregularity
localized at x0 on the surface for a large Reynolds number Re, see
Fig. 1.
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Fig. 1. Hump on the plate.

This problem is described by the stationary Navier–Stokes sys-
tem for compressible fluid (see [19]):{

ρ
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⟩
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⟨
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(1)

where Û = (û, v̂) is the velocity vector, p̂ is the pressure, η is the
dynamic viscosity, ρ̂ is the density, and (x̂, ŷ) are the coordinates.
We suppose that the upstream flow is plane-parallel with velocity
Û∞ = (û∞, 0) and density ρ̂∞.

We pass to the dimensionless form of nonstationary Navier–
Stokes equation (1). Setting dimensionless variables (without hat)
as (x, y) = (x̂/L, ŷ/L), p = p̂/P , U = (u, v) = (û/u0, v̂/u0),
ρ = ρ̂/ρ0, we obtain⎧⎨⎩ρ
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where L is the characteristic length, u0 is the characteristic speed,
Re =

ρ0u0L
η

is the Reynolds number. Obviously, setting P = ρ0u2
0

and ε = Re−1/2, we obtain{
ρ
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In the dimensionless form, the upstream flow isU∞ = (u∞, 0), ρ∞,
where u∞ = û∞/u0 and ρ∞ = ρ̂∞/ρ0.

We assume that the plate surface is described by the relation

ys = ε4/3µ
(
ξ
)
, (4)

where ξ = (x − x0)/ε, ε = Re−1/2 is a small parameter, and
limξ→±∞µ(ξ ) = 0.

Aswill be shown below, the asymptotic solution of problem (3),
(6) has a double-deck structure, which consists of a thin boundary
layer and the classical boundary layer, see Fig. 2.

For simplicity, we assume that

p = Kρ, K = const > 0, (5)

where
√
K is the speed of sound. We note that only the subsonic

flow (u∞ <
√
K ) is considered in this paper.

We also note that all possible flows are localized near the
irregularity and do not influence the flow at a far distance from
it.

The boundary conditions are
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)
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We note that problem (3), (6) was considered earlier in the
incompressible case in [1,2].

We also note that this problem was investigated in the com-
pressible case but for periodic irregularities on the surface in [6].
The main difference is that, in the periodic case in contrast to the
localized case, the solution separates into two components, i.e., the
oscillating and averaged parts.

Fig. 2. Double-deck structure of the boundary layer.

2. Formal asymptotic solution

As was already mentioned, the solution of problem (3)–(6) un-
der study has the double-deck structure (see Fig. 2). We introduce
the scale

θ = y
/
ε4/3, τ = y

/
ε, ξ = (x − x0)

/
ε.

The superscript on the functions below stands for the number
of the deck: I is the thin boundary layer (variables (ξ, θ )), II is the
classical boundary layer (variables (ξ, τ )), and III is the external
region.

We assume that the presence of a hump does not affect the
flow far from it (i.e. all functions depending on ξ tend to zero as
ξ → ±∞). Also note that all functions below depending on τ (θ )
decrease by the law |τ−N

| (|θ−N ) as τ → ∞ (θ → ∞), where
N ∈ N is sufficiently large, see [3] for details.

The formal asymptotic solution of problem (3), (6) has the form

u(x, y) = u∞ + uII
0(x, τ ) + ε1/3uI

1(x, ξ , θ )

+ ε2/3uII
2(x, ξ , τ ) + O(ε),

v(x, y) = ε2/3(vI
2(x, ξ , θ ) + vII

2 (x, ξ , τ )
)
+ O(ε), (7)

ρ(x, y) = ρ∞ + ε2/3ρ II
2 (x, ξ , τ ) + O(ε),

where θ = y/ε4/3, τ = y/ε, ξ = (x−x0)/ε, u∞ is the velocity of the
plane-parallel upstream flow, ρ∞ is its density, and uII

0 = u∗

0 − u∞.
The function u∗

0 has the form

u∗

0 = u∞f ′
(
τ/

√
x
)
,

where f (γ ) is the solution of the Blasius-type problem{
ρ∞ff ′′

+ 2f ′′′
= 0,

f (0) = f ′(0) = 0, f ′(∞) = 1.
(8)

This system of equations is an analogue of the Blasius equation for
incompressible flow in classical Prandtl boundary layer, and the
difference is in the presence of the coefficient ρ∞, see [20,21].

The functions uI
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