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a b s t r a c t

The spatial instability of double-layer viscoelastic liquid sheets in a viscous gas medium is investigated.
A linear stability analysis is used to simplify the governing equations and boundary conditions combined
with theOldroyd-Bmodel for describing the viscoelastic liquid. The growth rate and the cut-offwavenum-
ber have been studied by analyzing the dispersion curve which is based on the spectral collocation
method.Moreover, we use the decomposition of growth rate to interpret some special cases.We conclude
that the thickness ratio, the liquid density ratio, the liquid viscosity ratio, and the gas-to-liquid viscosity
ratio stabilize the liquid sheets, while the gas-to-liquid density ratio, the Reynolds number, and theWeber
number destabilize the liquid sheets. The dispersion curves are nearly-identical when the surface tension
ratio is smaller than one, while the surface tension ratio is a stabilizing factor when the ratio is larger than
one, but the second maximum and the counterintuitive destabilization exist in the large wavenumber
region. As specific parameters concerning the viscoelasticity, the elasticity number transforms from the
destabilizing factor into the stabilizing factor with the increased Reynolds number in the region nearby
the cut-off wavenumber, because the relationship between the change rates of viscous dissipation terms
and elasticity terms in the decomposition of the growth rate is varying. Besides, it is discovered that the
trend of the change of the growth rate under the varying stress relaxation time ratio is non-monotonic
and double-layer liquid sheets are most stable when the stress relaxation time ratio is near 3 (not 1),
because the difference between the change rate of the viscous dissipation and the deformation retardation
dissipation determines themost stable region (not the elasticity difference), which can also be interpreted
with the variation of the energy terms.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

It is generally known that the thin sheet is one of themain forms
in which a liquid issues from an orifice. Due to the wide range
of the practical applications of the atomization of sheets, such as
spray combustion, agricultural sprays, film coating chemicals, and
pharmaceutical processing. It is pivotal to study themechanisms of
instability and breakup of the liquid sheet. Hence the liquid sheet
stability has been researched as a classical problem for a long time
by many researchers.

The stability of an inviscid liquid sheet moving in an inviscid
stationary gas medium was first investigated by Squire [1]. He
studied the temporal linear stability of an inviscid liquid sheet in an
inviscid gasmedium and concluded that the sheet is unstable if the
Weber number is larger than one. He also found the dimensionless
wavenumber formaximum instability, which has been found to be
an important parameter. The further study by Hagerty & Shea [2]
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showed that only two modes of waves can exist, sinuous waves
(antisymmetric) and varicose waves (symmetric). Especially, the
growth rate of the former is greater than that of the latter. Also,
the experiments were performed for the comparison with the
theoretical predictions. With the progress in the linear stability
analysis of the inviscid liquid sheet, more researchers began to
study the more perfect model of the sheet by adding more physics
to the analysis. For example, the linear stability of the viscous sheet
has been investigated by Dombrowski and Johns [3], Lin [4], Li and
Tankin [5], and Li [6]. They concluded that the instability of the
liquid sheet is dominated by a velocity difference between liquid
and gas. Their study also showed that the viscosity of the liquid
sheet plays a delicate dual role on sheet instability in association
with the Weber numbers.

It should be noted that all themodels established above are con-
fined to the classic single layer liquid sheet. The double-layer liquid
sheets may be involved in some applications, such as multilayer
curtain coating (Dyson [7]) and doublet impinging-jet injectors
(Sutton and Biblarz [8] and Zhao et al. [9]). To explain the instabili-
ties of double-layer viscous liquid sheets, Ye et al. [10] conducted a
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Fig. 1. Schematic diagram of the two-dimensional double-layer viscoelastic liquid
sheets moving in a stationary gas medium.

linear stability analysis and considered two situations, an inviscid
gas situation and a viscous gas situation. The analytical dispersion
was derived in the inviscid gas situation, which indicated that
the cutoff wavenumber of the dispersion curve is larger than that
of a single-layer sheet. While in the viscous gas situation, the
dispersionwasmore difficult to acquire because of the existence of
the gas boundary layer. Hence Ye et al. used a spectral collocation
method to solve the problem. It is significant that the growth rate
at large wavenumber is fairly suppressed in comparison with the
inviscid gas solution.

Although there is a detailed analysis of the instability regarding
the viscous double-layer liquid sheets, similar research on the
double-layer viscoelastic liquid sheets is lacking. The aim of this
study is to find out how differently the instability occurs for the
double-layer viscoelastic liquid sheets. The Oldroyd-B model is
used to describe the viscoelastic liquid. The breakup model of the
double-layer viscoelastic liquid sheets is explained in Section 2.
The dispersion curves and the relevant analysis of the instability
are presented in Section 3. The findings are summarized in Sec-
tion 4.

2. Model and method

Fig. 1 presents the model of a two-dimensional double-layer
viscoelastic liquid sheets moving in a stationary gas medium.

The displacements of perturbations and the surface tensions of
the three interfaces are ηj and σj, where j = 1, 2, 3 represents the
bottom, the middle, and the top interface. Note that the surface
tension of the middle interface is approximately σ2 = |σ3 − σ1|

(Hertz and Hermanrud [11]).
In the liquid layers, the thicknesses of the first and second

liquid layers are a and b, respectively. The densities, viscosities,
perturbation velocities in the x and y directions, and perturbation
pressures are denoted by ρlj, µ0j, uj, vj, and pj, where j = 1, 2
represents the liquid layer 1 and the liquid layer 2. Besides, the
components of the extra stress tensors are τxxj, τxyj, and τyyj, where
j = 1, 2 represents the liquid layer 1 and the liquid layer 2.

In the gas area, the basic flow in the liquid is uniform and the
velocity of the both layers isU. The density and viscosity of the sur-
rounding gas medium are ρg and µg , respectively. In addition, the
perturbation velocities in the x and y directions and perturbation
pressures are ugj, vgj, and pgj, where j = 1, 2 represents the lower
gas and the upper gas.

Due to the viscosity of the gasmediumand the no-slip condition
at the liquid–gas interfaces, themodified Stokes layer model in the
work of Tammisola et al. [12] is adopted because the model is in
good agreement with experiments. For the modified Stokes layer
model, the air velocity is expressed by the following equation:

Ug = U − Uerf (λ/2) (1)

where erf() is the error function. λ has the different forms in two
different regions as follows:

For the upper gas region,

λ = (y − b) /
√

νg [T ] (2)

For the lower gas region,

λ = (−a − y) /
√

νg [T ] (3)

where νg is the kinematic viscosity of the gas,

νg = µg/ρg (4)

and [T ] =
x
U is a function of x meaning the growth of the gas

boundary layer in the streamwise direction. Especially, x = 0
corresponds to the position where the liquid sheet is ejected into
the surrounding gas.

We choose the Boger fluids as the specific research object
because this kind of viscoelastic fluid has the nearly constant
viscosity, which is beneficial for the researchers to perform the
relevant experiment to study the elastic effects separated from
viscous effects. Under small shear rates, the rheological equation
of the Boger fluid can be characterized by the Oldroyd-B model.
Thus the viscoelasticity is described with the Oldroyd-B model as
follows [13]:
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(6)

where γ̇ is the strain tensor, ω is the vorticity tensor, µ0 is the
zero shear viscosity, λ1 is the stress relaxation time, λ2 is the
deformation retardation time, D/Dt is defined as the co-rotational
derivative, µ1, µ2, ν1, and ν2 are the constants which are not fixed
(usually with ν1 = ν2 = 0, and often with µ1 = λ1, µ2 =

λ2). Neglecting the nonlinear terms and gravitation effects, the
following linearized equation can be established:
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. (7)

In our work, λj1 and λj2 denote the stress relaxation time and
deformation retardation time of the two liquid layers, where j =

1, 2 represents the liquid layer 1 and the liquid layer 2.
Because of the small perturbation in the initial stage of the

destabilization process, the linear stability analysis is used to sim-
plify the equations. The linearized governing equations can be
established:

Liquid layer 1,

∂u1

∂x
+

∂v1

∂y
= 0 for − a < y < 0, (8)
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