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a b s t r a c t

An investigation ismade into thewaves of small andmoderate amplitudewhichmayoccur at the interface
of two inviscid fluids of different densities. The external forces are those of gravity and surface tension and
the waves are due to the resonant interaction between the Mth and Nth harmonics of the fundamental
mode. In contrast to previous studies, damping effects are taken into account. Important parameters in
the problem are the velocity and density ratios. A pair of coupled nonlinear Schrodinger-type partial
differential equations for the wave amplitudes is derivedwhichmodel the evolution of the waves, correct
up to third order. A wide variety of sinusoidal solutions to the equations is shown to exist, irrespective of
the values assigned to the parameters. The stability of these solutions to smallmodulational perturbations
is considered. It is found that when the damping is due to dissipation then the waves are stabilised.
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1. Introduction

In this paper we continue an investigation into the evolution,
nature and stability of the resonant capillary–gravity waves which
occur on the interface of two ideal fluids, each of semi-infinite ver-
tical extent. One of the earliest pieces of work on resonant water-
waves was that of Wilton [1]. He considered the waves which
occur on the free surface of a fluid and arise due to the interaction
between the fundamental mode and its second harmonic. These
waves now bear his name. The topic then, perhaps surprisingly,
lay relatively dormant until the 1960’s when Pierson and Fife [2]
reconsidered the Wilton ripple phenomenon by employing the
method of multiple scales to derive some power series expansions
of the possiblewave profiles. In a series of papers Nayfeh used sim-
ilar methods to study both second and third harmonic resonances.
In Nayfeh [3–5] he looked at second and third harmonic resonant
waves in the cases of both deep water and finite depth while in [6]
he studied second harmonic resonances between an air stream
and a train of capillary–gravity waves. At around the same time
McGoldrick [7,8] published a pair of papers which used similar
techniques to study second harmonic resonances and also consid-
ered briefly themore general interaction between the fundamental
and higher order modes. The first study of perfectly general M-N
resonances appears to be that of Chen& Saffman [9]who employed
weakly nonlinear methods to give a fairly complete description
of the kinds of waves which may occur on a free surface. Later
Jones & Toland [10] cast the problem as one in bifurcation theory
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and used methods of functional analysis to obtain results which
largely confirmed Chen & Saffman’s conclusions, a similar analysis
was conducted by Okamoto [11]. Subsequently Jones went on
to consider the resonant waves which occur at the interface of
two fluids. In [12] and [13] he regarded the problem as one in
bifurcation theory and deduced results concerning the existence
and multiplicity of solutions. In [14] he employed the method of
multiple scales to derive a pair of coupled nonlinear Schrodinger
equations which describe the evolution of the interface and pre-
sented sinusoidal-type solutions to these equationswhose stability
was analysed.

The stability of wavetrains has a long history but one of the
major results of the last fifty years is that of Benjamin & Feir [15]
who showed that a nearlymonochromatic gravity planewavetrain
of moderate amplitude on deep water is unstable in the presence
of small sideband perturbations. Shortly afterwards Zakharov [16]
showed how the evolution of such a wavetrain may be described
by the nonlinear Schrodinger equation and how this may be used
to deduce similar results concerning its stability. In a very inter-
esting paper [17], Segur and his co-workers conducted a careful
re-appraisal of the conclusions of Benjamin & Feir. They examined
uniform trains consisting of capillary–gravity waves and took into
account the effects of dissipation. Their results showed that the
Benjamin & Feir instability may be stabilised by any finite amount
of dissipation, however small, see also [18].

Other noteworthy studies of interfacial capillary–gravity waves
are to be found in [19–21]. In [19] a study is made of the waves
which arise between fluids of finite and unequal depths. Initially a
variational approach is employed in order to derive the Lagrangian
formulation of the problem. Both travelling waves, standing waves
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and mixed waves (i.e. those which are formed by an interaction
between standing and travelling waves) are considered. Subse-
quently the authors employ the method of multiple scales by
means of which they derive an equation of the Davey–Stewartson
type in order to analyse the stability of the waves. The topic of [20]
is a study of the resonant waves which are formed at the interface
of two fluids of infinite vertical extent. It deals with the case which
arises when the second harmonic and the fundamental mode are
at near resonance and also employs a Lagrangian formulation to
derive the normal form of the problem. However, this particular
resonance is specifically excluded from this report. A more ge-
ometrical approach was taken in [21] which exploits the sym-
metries inherent in the problem and derives a new Hamiltonian
formulation. Most of this work is devoted to non-resonant waves
but a singularity leading to nonlinear resonance is identified and
investigated numerically.

In this paper we extend these studies and investigate the res-
onant interfacial capillary–gravity waves which are formed by the
interaction of theMth andNth harmonics of the fundamentalwave
where M > N , (for technical reasons the cases M = 2N and M =

3N are excluded). It is shown how the evolution of these interfaces
may be modelled by a pair of coupled nonlinear partial differen-
tial equations of a nonlinear Schrodinger type. These generalise
the equations appearing contained in [14] which considered the
same problem at precise resonance. In this report imperfections or
damping effects are taken into account. These imperfections can be
caused in a variety of ways. As considered in [22], they could be as
a result of dissipation, or since we are considering resonant waves
they could be as a result of waves which are close to, but not equal
to, the critical wavelength.

A very wide class of solutions to these equations are exhibited,
generalising the somewhat restricted set given in [14]. In contrast
with that report, no restrictions are imposed on the values of the
parameters present in the problem. We then proceed to consider
the stability of the interfaces. In the case when the resonance is
exact many differing stability portraits were found to be possible,
depending on the chosen values of the parameters. However, when
dissipation is present the waves are always stable. The presence of
damping in general and dissipation in particularwould hence seem
to be very significant and important in the study of water waves
in nature. For instance in [23], Snodgrass et al. successfully tracked
ocean swell across thewhole expanse of the Pacific ocean, whereas
according to the nondissipative theory of [15] and [16], suchwaves
are intrinsically unstable.

2. Setting the scene

We shall be concerned with the irrotational motion of two
inviscid and incompressible fluids, each of infinite horizontal and
vertical extent. We shall choose a three dimensional Cartesian co-
ordinate system so that when the system is in its unexcited state
the interface of the fluids is given by z = 0, the lower fluid is mov-
ing everywherewith constant velocity V1 in the x-direction and the
upper fluid is moving everywhere with constant velocity V2 in the
x-direction. (Note that we do not assume the V ′

i s to be positive so
the flows need not be uni-directional.) When the system is in its
disturbed state the interface is given by z = H(x, y, t). Throughout
the paper the subscript 1 is used to denote quantities associated
with the lower fluid (that occupying z ≤ 0) and 2 is used to denote
those associated with the upper fluid ( that occupying z ≥ 0). We
shall denote the densities of the fluids by ρi where ρ1 > ρ2 so
that the heavier fluid is the lower. We define the relative density
ρ to be ρ2/ρ1 which clearly lies between zero and unity. Since the
motion is irrotational we may introduce the velocity potentials for
the sinusoidal disturbances ϕi(x, y, z, t) in each fluid. The forces on
the fluid are gravity g which acts in the negative z direction and
the surface tension S which acts at the interface.

We shall be interested in the motion arising from the interac-
tion of the Mth and Nth modes of the fundamental where M and
N are fixed but arbitrary integers. To this end we introduce the
notation E(n) = exp in(x − ω t), where n is any integer, ω is the
fundamental frequency and we have normalised the wavenumber
to unity.We also introduce a small positive parameter εwhich acts
as a measure of the interface steepness and the ‘slow variables’
X = εx, Y = εy, T0 = εt together with the ‘very slow variable’
T = ε2t . The notation T0 might look slightly ugly but it turns
out that T0 drops out of the analysis at a fairly early stage and we
work mainly with T, X and Y. The method of multiple scales is now
employed in order to derive the governing equations of themotion.
For more detailed descriptions of this procedure, see [14,24–31].

The equations governing the motion are then

∇
2ϕ1 = 0, z ≤ H, (1)

∇
2ϕ2 = 0, z ≥ H, (2)

∇ϕ1 → 0, z → −∞, (3)
∇ϕ2 → 0, z → ∞, (4)
Ht − ϕjz + (Vj + ω)Hx + ϕjxHx + ϕjyHy = 0, z = H j = 1, 2

(5)

ρϕ2t − ϕ1t + ρ(V2 + ω)ϕ2x − (V1 + ω)ϕ1x −
MN
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(M + N)(1 + H2
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y )
3/2

+ ρε2δ ϕ2 − ε2δ ϕ1 = 0, z = H. (6)

In the governing equations the coefficients in the boundary con-
ditions (5) and (6) have been chosen to ensure that the linearised
forms are satisfied by the Nth and Mth harmonics. Details may be
found in [14,27,29].

In these equations, the parameter δ represents damping ef-
fects. This damping can be caused by a variety of mechanisms,
for instance slight variations in the frequency of the wave maker;
the presence of cross waves or the Raman effect. In [32] Miles
considered damping due to dissipation. In this case δ is positive
and he developed analytic forms for δ based on the various types
of dissipation which can occur in deep water systems. It is of
course possible to perturb the equations in many other ways to
account for damping effects. For instance Dias et al. [33] present a
formulation in which both Bernoulli’s and the kinematic boundary
conditions are perturbed and justify it rigorously for free surface
gravity waves. The work of Zhang & Vinals [34] included a per-
turbation term of the form δφzz while in [3] Nayfeh perturbed the
wave number. In [35,36] Jones perturbed the term involving Hxx
in (6) while in [29] he replaced the leading order term CN in the
expansion of H (see (9) below) with CNe−iε δ t and similarly for CM .

The solutions φ = 0 and H = 0 to the system ((1)–(6))
represent horizontal laminar flow with velocities V1 and V2 in the
x-direction in the lower andupper fluids respectively. The interface
is given by z = 0.

The next step in the analysis is to expand the velocity potentials
and the interface profile in ascending powers of ε in order to take
into account the disturbance due to the two harmonics. Up to
appropriate order, the relevant expansions are

ϕ1 = [ εiV1CN + ε2(A(2)N + zV1CNX )

+ ε3(A(3)N − izA(2)NX −
iz2

2
V1CNXX −

iz
2
V1CNYY ) ] E(N)eNz

+ [ εiV1CM + ε2(A(2)M + zV1CMX )
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