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The geometry of rays and wavefronts associated to the fast magnetosonic wave is studied for a planar cold
plasma, in an equilibrium where magnetic null points and current sheets are present. It is found (a) that
null points attract rays and singular ones repel them, causing a characteristic evolution of wavefronts;
and (b) that current sheets act as waveguides, directing both rays and wavefronts towards them. High

frequency fast waves remain continuous when crossing the sheet; depending on the initial condition,
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these waves may become shocks before or after the sheet.
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1. Introduction

The connection between magnetohydrodynamic waves and
magnetic reconnection is well attested in several astrophysical
settings, notably in the solar corona [1]. One of the main features
of classical models of fast magnetic reconnection is the presence
of magnetic null points [2-4]: thus the study of MHD waves in
equilibria possessing magnetic nulls is worth pursuing. [5] is an
excellent review, and specific applications to solar reconnection
may be found e.g. in [6-8]. In many of these papers the plasma
is assumed cold, or to have a low beta, meaning that the sound
speed is so much smaller than the Alfvén one that it may be
ignored. In this case no MHD wave can travel over a magnetic
null, since the fast magnetosonic speed is B/,/p, the Alfvén wave
speed is (B-n)/,/p, and the slow wave speed is zero; B represents
the magnetic field, p the density and n the wave vector. Thus
magnetic null points behave like rocks around which MHD waves
may curl and break, but never surpass. Geometric optics (also
called geometric acoustics) have been applied successfully to null
points in the solar atmosphere, highly relevant in the study of
active regions. In [9], the rays for the single null case are found both
for cold and warm plasmas, and both caustics and shock waves
are described; whereas in [10], slow magnetosonic waves in solar
active regions are studied. The relation between isolated magnetic
nulls and formation of fast shocks is also analyzed in [11] by
geometric optics methods. While fast waves are attracted by null
magnetic points, the slow ones do not reach those points (where
reconnection occurs) with any intensity. However, it appears that
these may generate fast waves due to MHD mode transmission, in
particular at points where the Alfvén and sound speeds coincide.
Nevertheless, this is not the only relevant configuration: several
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geometries involve a whole line where the magnetic field changes
direction, and therefore a singular current appears. This occurs
for the classical model of Sweet and Parker for slow reconnection
[12-14], as well as in the models of fast reconnection of Petschek,
Axford and Sonnerup [15-18], and, more to the point, in the wide
sheet model pioneered by Syrovatskii [19,20]; see also [21,22].
All these models have been refined, extended and argued about
to account for the complexities of real world magnetic recon-
nection, but independently of particular preferences the study of
fast magnetosonic waves in equilibria possessing current sheets is
interesting in itself. We will use the methods of geometric optics
to find the evolution of rays and wavefronts. The basics may be
found in [23-25], while applications to MHD and shock formation
occur in [26,27]. Details on the MHD equations, eigenvalues and
eigenvectors are well explained in [28]. We will analyze the rays
and wavefronts starting from a single front in progressively more
complex geometries: first with a single critical X-point of the
magnetic field; then with two X-points connected by an O-point.
This is the correct topology when e.g. a change in boundary con-
ditions splits an isolated X-point, but from the physical viewpoint
is unnatural, since the size of the magnetic field at the O-point is
infinite. The truth is that a current line connecting the two X-points
forms and the magnetic field becomes discontinuous: this is our
third configuration.

2. Equilibrium, rays and wavefronts

For any static equilibrium of the ideal MHD equations the
Lorentz force must be compensated by the kinetic pressure. In
normalized units:

(V x B) x B=VP. (M
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A state equation for the pressure must be added. For an isothermal
or polytropic plasma we have P = P(p), p being the fluid density.
The sound speed c; satisfies cs2 = 0P/dp; the Alfvén speed c,
satisfies c2 = B?/p, where B = |B|. Since the assumption
P = P(p) means VP = c2Vp, if we assume a low beta or cold
plasma (i.e. that sound speed is very small as compared with the
Alfvén one), we conclude VP ~ 0, which agrees well with the
hypothesis VP = 0 in Syrovatskii’'s model [3]. The fluid is in
general compressible. Indeed, for large times and a current sheet
of constant width, the plasma tends to rarify near the sheet [20].
However, since for large times the model is doubtful anyhow (see
e.g. [29]), we admit the quasi-static character of the model and
consider only the initial stages of the evolution, when one starts
with a constant density. Since the spatial gradients of the magnetic
field are then much larger than the ones of the density, we assume
that p ~ const. (Taken to 1 for convenience). Therefore the Alfvén
velocity equals B.

For a planar plasma V x B is orthogonal to B, so necessarily
V x B = 0 and the plasma is current-free (except in the regions of
the domain where it is singular). That means that if B = (By, B)),
those functions satisfy
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the last equation because of V - B = 0. In other words, calling w =
B, + iB, w satisfies the Cauchy-Riemann equations and therefore
is an analytic function. We will analyze the fast waves associated to
the certain well known configurations by the methods of geometric
optics. For this to be a valid approximation, the wavelength of the
perturbed wave must be small compared to the typical lengths of
the equilibrium: equilibria with rapid spatial variation are not ap-
propriate for this method. Our first equilibrium, involving a single
null point of the magnetic field, varies smoothly and therefore is
not suspect. However, our second equilibrium includes a singular
point of the field and the third one a discontinuity, so that in
principle geometric optics cannot be applied. The reasons why this
approach is nonetheless acceptable are explained in the respective
cases.

Let us remember the basics of geometric optics. Consider a
quasilinear hyperbolic system:

ou Ju
5+ ]ZAJ'("’ W, txuw=0. (3)

For any spatial vector k and equilibrium state u, take a fixed
eigenvalue A(K),

det( A(K)I +Aj(X, llo)kj) =0. (4)
The eikonal equation associated to this eigenvalue is
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— = A(Vo¢), 5
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and ¢ is the phase. In our case the system will be the ideal MHD
one, and we choose for A the fast magnetosonic frequency (see
e.g.[28]). If ug corresponds to a static state with pressure P, density
p and magnetic field B,

1/0P B
AK? = = — + — ) Ik?
2\dp  p

1[/op B\’ 3P (B - k) i
+[(+p> k* — 4— p |1<|2} . (6)

2 \dp ap

Rays are solutions of the system
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The phase is constant along rays,
d
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Often one takes a normalized vector n = k/|k| and uses the
frequency
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Egs. (7) for the plane may be written in terms of ¢, n and its orthog-
onal nt, chosen so that {n, n*} form an orthonormal positively
oriented system:

d

d—’t‘ = cn+(nt - Vaont, (10)
dn

= —(nt - Vio)nt. (11)

For static equilibria, and in terms of the speed of sound, Alfvén
speed, and the angle yx that forms the magnetic field B with n, the
fast magnetosonic frequency c(n) satisfies:
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With our hypothesis of low beta, this equation simplifies enor-
mously:

c=cs=B. (13)
Writing

n = (cosy, sinyr)
nt = (—siny, cos ¥), (14)
the ray equations (11) plus identity (13) yield

% = Bcosy (15)
dt
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%:g—isiHW—%cosw. (17)
This implies
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Let arg be one of the arguments of the analytic function w, chosen
so as to be continuous along the rays under study. Recall that if the
domain of w is not simply connected because of the presence of a
singularity or a current sheet, arg w is a multiform function and its
value may change as one passes twice over the same point of the
domain; this, however, will not be an issue in the cases we study.
Since logw = InB + iargw is locally an analytic function, by the
Cauchy-Riemann equations and (15)-(16) one finds

d

dt(x// argw) = 0. (19)
This means that vy — arg w is constant along the ray. If we take the
start of this at t = 0, and calling 6 = arg w, k = ¥(0) — 6(0), Eqs.
(15) and (16) may be written as

dx

— = Bcos(f + k

p” cos(6 + k)

d

% = Bsin(6 + k). (20)
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