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a b s t r a c t

We analyse an algorithm for the calculation of travelling water waves in flows with constant and variable
vorticity. The algorithm is based on numerical continuation techniques, which are suitably adapted to
the water wave problem. Numerical examples illustrate the performance of the algorithm for flows
of constant vorticity, where the results are compared with the literature. We observe agreement with
already existing results, but we also have some new qualitative and quantitative results considering the
characteristics of the water waves both for constant and variable vorticity.
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1. Introduction

We are studying two-dimensional waves travelling at constant
speed c , for different vorticities. This problemhas practical interest
because it is related with the detection of non-uniform underly-
ing currents from the surface wave pattern. The characterization
‘travelling’ means that in a two-dimensional frame moving with
the constant speed c , the flow pattern – and, in particular, the
shape of the surface of the fluid – does not change over time. Two-
dimensionalitymeans that thewaves propagate in a fixed horizon-
tal direction and the flow presents no variation in the horizontal
direction orthogonal to the direction of wave propagation. For this
reason, it suffices to analyse a vertical cross-section of the flow,
parallel to the direction of wave propagation. To model sea waves
of large amplitude the assumptions of inviscid flow in a fluid of
constant density are appropriate and the effects of surface tension
are negligible—see the discussion in [1].

It is worth highlighting the physical importance of flows with
vorticity in modelling wave–current interactions; general discus-
sions of the physical implications of rotational flow may be found
in the references [1] and [2]. Recent studies have pointed out that
periodic travelling waves which propagate at the surface of water
with a flat bed in a flow of constant vorticity must be symmetric
if no flow-reversal occurs and if the wave profile is monotone
between successive crests and troughs, see [3,4]. This means that
an underlying non-uniform current of constant vorticity does not
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break the symmetry of irrotational wave trains. Thus, following
this formulation, we make the assumption of no flow-reversal in
this work: In the absence of flow reversal, the approach developed
in [5] ensures the real-analyticity of all the streamlines; see also
the discussion in the survey [6]. In contrast to this, the available
results on regularity for flow reversal (case in which critical layers
appear) are merely of class C∞, see the results in [7].

Prior to the establishment of any analytically rigorous mathe-
matical results, numerical investigations for large amplitudewaves
with vorticity, were initiated by the seminal papers [8] and [9] for
the infinite, and finite, depth cases respectively. Indeed, due to sig-
nificant technical complications, rigorous mathematical analysis
establishing the existence of large amplitudewater waves has only
recently been achieved. In the case of irrotational waves this was
achieved by the work of Toland and collaborators (where [10,11]
represent nice surveys of this topic), and for waves with vorticity,
following the seminal paper [12], the existence of large amplitude
waves was established for various physical generalizations in [13–
16].

In this work, we follow the analytical formulation derived
in [12], and reviewed in several other works, see for exam-
ple [17,18]. In this approach, the curve of solutions is extensively
analysed and a crucial ingredient is the existence of a branch of
the bifurcating diagram, which contains flows beneath genuine
waves.1 In particular, this branch starts from a special laminar
solution, the existence of which is connected with the so-called

1 In the sense that they are not of zero amplitude.
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dispersion relation; this curve may be continued, using arguments
from bifurcation theory, to a global continuum which contains at
the limit a flow with a stagnation point. The characteristic of the
latter wave is that its horizontal velocity approaches the constant
speed of propagation c , being related to waves of maximal ampli-
tude, hence providing the analogue to the Stokes’ extreme wave.
Computations which are based on this approach are performed
in [19,20], with several interesting results which agree with the
relevant analytical predictions. Among the most important results
of those works we point out the following: The stagnation can
occur, not only at the crest, but also at the point on the bottom
directly below the crest. Along the bifurcation curve, for fixed
relative mass flux2 p0, the amplitude of the wave is increasing,
the depth d varies only slightly and the hydraulic head3 Q has
(in general) one turning point. Furthermore, the waves of maximal
amplitude are obtained at the end of the bifurcation curve and the
maximal amplitude is an increasing function of |p0|, in the case
of constant vorticity. Finally, the shapes of the streamlines of the
extreme waves depend on the vorticity, which is a result observed
also in several numerical works and indicates the importance of
the effect that the vorticity has on the features of water waves.

In our work, we analyse a numerical continuation approach
tailor-made for the above described mathematical formulation,
enriched with techniques appropriate to overcome some partic-
ular obstacles of this problem (turning points, bifurcation points
and stagnation points). The idea on reconstructing the bifurcation
branch described in [12], via numerical continuation techniques,
was introduced in [19]. In our algorithm, among other techniques
which are described in more detail in Section 4, we make explicit
usage of analytical results obtained in [12]—instead of evaluating
numerically the relevant features, through the solution of an eigen-
value problem. In more detail:

• The explicit position of the bifurcation point, which is the
starting point of our iterative numerical scheme is obtained
analytically through [12,18] and [21] for different cases of
vorticity.

• Starting from the above point, the favourable direction for
the numerical continuation, which will lead to the recon-
struction of the branch containing the non-laminar flows (as
opposed to the trivial one), is obtained analytically in [12,22]
and [21], for the different cases of vorticity.

• The careful refining of the mesh described in Section 4
allows for the computation of waves closer to stagnation
than the ones obtained in [19].

• The adaptation (described in Section 3) of the numerical
continuation technique on this formulation of the water
wave problem allows the systematic study of the main fea-
tures of the wave and the improvement of the algorithm;
as examples we note the adaptation of the step-size in the
‘predictor stage’ of our method and the interchange of the
continuation parameter.

This has as a result an efficient and inexpensive algorithm, which,
additionally, gives rise to new parts of the interesting branch
of the bifurcation diagram, i.e. to families of waves with novel
characteristics, see for example Section 4.2. Furthermore, we find
agreementwith already existing numerical resultswhile observing
additional characteristics close to stagnation, which in some cases
is important enough to give an additional understanding on the
solutions of the problem. Finally, in order to show the generality

2 The flux p0 is defined in (9).
3 This quantity, being indicative of the total mechanical energy of the wave, is

defined in (12).

of our algorithm, we compute some cases of continuous and non-
constant vorticity; this results in, also, an interesting family of
water waves, which is depicted in Figs. 23–24.

We find worth-mentioning a series of computational works,
for example [23–27], which are based on a different mathematical
formulation of the problem. In particular, they are based on the
analysis of [28,29]; see also [30,31] and [32] for extending the latter
work in a domain with fixed and moving bottom, respectively.
One can observe that our computational results are in qualitative
agreement with results of the above-mentioned works.

In the recent work [33] an extensive numerical study of pe-
riodic travelling water waves is made. This work is based on a
conformal mapping which is described also in [34,35] and their re-
sults are obtained through a combination of analytical techniques
and spectral methods. This approach has the advantage over our
work that the computation of waves with stagnation points (both
on the boundary and in the interior) are possible. On the other
hand this approach treats only the case of constant vorticity; one
could find potential on extending this work to general vorticity
using the analysis of [36] and [37]. Our approach, although having
the disadvantage on stagnation points, provides results for more
general distributions of vorticity; as an example we provide some
examples in Section 4.3. Moreover, our computation reveals some
interesting behaviour of the pressure for a particular family of
waves which is discussed in Section 4.2 and it is novel, up to
our knowledge. Even though that for waves that do not have
stagnation points there is qualitative agreement between ourwork
and the above-mentioned one, the most interesting cases of that
work involves waves with internal stagnation (which we do not
compute). Finally, the rigorous and exact correspondence of these
two formulations – the conformal mapping used in [33] and the
semi-hodograph transformation used in [12] and here – is still an
open question.

The paper is organized as follows: In Section 2, we make a
brief review of the mathematical formulation of the problem. In
Section 3, we present the numerical continuation method, which
we employ in order to compute the water waves along the bifur-
cating curves. In Section 4, we present the numerical results of
the above procedure and we discuss the special characteristics of
the waves, depending on the different values of constant vorticity.
Moreover, in order to show the generality of our algorithm, we
present the relevant results for some case that the vorticity is not
constant; in these examples the vorticity varies linearly, as well as
quadratically, with respect to the stream function. In particular, we
illustrate the wave profiles, as well as other characteristics such
as the velocity profile and the pressure throughout the fluid. The
knowledge of these flow characteristics is very useful in qualita-
tive studies, see [38,39]. Moreover, in practice information on the
state of the sea surface is often gathered from subsurface pres-
sure and/or velocity measurements; we refer to the discussions
in [13,26,40–43].

2. The basic equations and terminology

In this section we present the governing equations for periodic
two-dimensional travelling water waves in flows of constant and
variable vorticity over a flat bed.

Let us denote the height function of the wave above the flat
bottom by h(q, p). This function satisfies the nonlinear boundary
value problem, defined by (1)–(3). We omit here the derivation of
(1)–(3) from the physical problem which was described in the In-
troduction. Instead, for the derivation of the constitutive equations
(1)–(3) and the mathematical formulation of the problemwe refer
to [12,17] for a detailed construction, to [18,19] for an extended
review and to [22,44] for a brief review.
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