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a b s t r a c t

The linear temporal stability of a viscous liquid sheet is studied in the presence of acoustic oscillations. The
viscous potential flow theory is applied to account for liquid viscosity. Acoustic oscillations are provided
by imposing a sinusoidal oscillation of the gas velocity or density. Results suggest that the viscosity has
a stabilizing effect with a zero mean velocity, and dual effects with a non-zero mean velocity. The effect
of oscillations at low velocity is more significant than effects realized at high velocity. Oscillations are a
destabilizing factor, although theyhave aweaker effect at a larger frequency than that at a lower frequency
due to the liquid viscosity. Acoustic oscillations promote the instability of the liquid sheet; however, the
effects of mean velocity, the gas-to-liquid density ratio, liquid sheet thickness and surface tension are
analogous, whether acoustic oscillations exist or not.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

Research to date has focused on the breakup of a planar liquid
sheet surrounded by a gaseous ambient, providing a theoretical
reference for numerous practical applications, such as combustion,
gas turbines, diesel engines, spray cooling, surface coating, and
atomization. The stability of amoving planar liquid sheet is of great
importance to the reliability of engine performance relative to the
rupture and atomization of liquid sheets. A sound knowledge of
the mechanism of the stability is not only of scientific value, but it
is also essential for the design and operation of practical systems.

Hydrodynamic forces are themain cause of disturbance growth
in a planar liquid sheet, leading to its ultimate breakup; these
effects are generally expressed by Kelvin–Helmholtz (K–H) insta-
bility. For this reason, extensive theoretical and experimental in-
vestigations have been performed on the K–H instability of planar
liquid sheets.

Squire [1] analyzed the linear stability of an inviscid moving
liquid sheet surrounded by inviscid gas. His experimental and the-
oretical results showed that surface tension has a stabilizing effect
on the disturbances of the liquid sheet; and themost unstablewave
has been found. Dombrowski and Johns [2] examined a viscous
liquid sheet in the presence of inviscid gas and predicted the diam-
eter of the liquid droplets formed by the rupture of the liquid film
generated by fan-spray nozzles. Crapper et al. [3] accounted for
the viscosity of both liquid and gas phases; their results revealed
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that liquid viscosity has no effect on the initial growth of the
sinuous wave and that liquid viscosity could extend the instability
frequency range. Li and Tankin [4] demonstrated the instability
of a thin moving viscous liquid sheet in a stationary inviscid gas
medium. They found two regimes of instability for viscous liquid
sheets: the aerodynamic and the viscosity-enhanced instability.
For sinuous disturbances, liquid viscosity enhances instability at
small Weber numbers, while reducing the growth rate and the
dominative wavenumber at large Weber numbers.

In the theoretical works cited above, linear stability analysis
was employed for air-assisted liquid sheets without acoustic oscil-
lations. However, pressure pulsations caused by combustion insta-
bility generally exist in liquid fuel engines, leading to an oscillating
gaseous ambient. The instability of the liquid sheet in an oscillating
gaseous ambient is due to a coupling effect of hydrodynamic forces
and oscillations. As mentioned above, effects of hydrodynamic
forces can be regarded as the K–H instability. Effects of oscillations
can also be dealt with using the theory of the parametric instabil-
ity. Hence the present problem is a combination of two kinds of
unstable mechanism: K-H instability and parametric instability.

There are many studies that focus on parametric instability.
Faraday [5] first examined the instability of periodic basic flow,
whichwas initially solved theoretically by Benjamin and Ursell [6].
They used the Floquet theory to solve the dispersion equations
with a form of Mathieu equations; they explained the unstable
and stable regions of the disturbance of the liquid, corresponding
to the unstable and stable solutions of Mathieu equations. Their
results explained the different experimental phenomena between
Faraday, Rayleigh, and Matthiessen.
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Kumar et al. [7–9] conducted extensive studies on the para-
metric instability of liquids, taking viscosity and the Coriolis force
into consideration. Kumar [10] presented a study on theparametric
instability of a Newtonian and a viscoelastic liquid sheet; and the
results were similar to the classic Faraday instability. Rajchenbach
et al. [11,12] conducted a procedure that theoretically explained
the experimental results. It was found that the excited mode is not
necessarily the standing wave that corresponds to the container
eigenmode with the frequency closest to nΩ/2, but oscillates
exactly at nΩ/2 with the wavenumber given by the dispersion
relation, including forcing and dissipation.

For the coupling effect of the K-H instability and the parametric
instability, [13] carried out theoretical research on the stability
of an unsteady K-H flow, a coupling effect of the K-H instability
and the parametric instability in fact. His results showed that the
oscillations of the basic flow can cause a subharmonic resonance;
so a wave becomes unstable when the wave is neutrally stable,
in the absence of the oscillations, and its frequency is half the
frequency of the flow oscillations.

In 1977 a linear stability analysis was employed by Dityakin
et al. [14] to investigate the instability of an air-assisted inviscid
liquid sheet in the presence of acoustic oscillations. Their results
showed that the characteristics of the instability of liquid sheets
are essentially affected by the velocity pulse of gas. The stable
regions and the unstable regions locate discretely. Within the
range of Weber number studied, the dominative wavenumber for
sinuous mode is identical with that for the varicose mode.

Vorob’Ev [15] examined the instability of inviscid liquid sheets
in another inviscid liquid medium with acoustic oscillations. The
motion was divided into fast and slow, with allowance for nonlin-
ear acoustic oscillations. The results revealed that the action of the
inviscid liquid sheets was determined both by the physical param-
eters and by the relative position of the liquid sheet to the node
and antinode of the acoustic field. Sivadas et al. [16,17] conducted
experimental research to observe the effect of acoustic oscillations
on air-assisted liquid sheets. They analyzed disintegration charac-
teristics and compared the characteristics with the flow features
in the absence of acoustic oscillations. Their results revealed that
properly external acoustic oscillations may accelerate the rupture
of liquids. Mulmule et al. [18–20] studied the effect of sinusoidal
acoustic oscillations on the breakup of the inviscid liquid sheet
both theoretically and experimentally. They found that the critical
wavelength tends to be smaller, and the size of the droplets formed
by the disintegration of the liquid sheet reduces in the presence of
acoustic oscillations.

Unfortunately, there are few theoretical studies that consider
the coupling effect of K-H instability and the parametric instability
for a viscous liquid sheet when there is a non-zero relative ve-
locity between the liquid sheet and oscillating gaseous ambient.
For purely K-H instability, the basic flow is steady; hence, the
disturbance can be expressed in terms of a normal mode. For
purely parametric instability, the Floquet theory can be adopted to
describe the disturbance. Thus, both cases have the same solution
for the full viscous flow. However, both the purely Floquet theory
and normal mode are invalid for the coupling effect of the K-
H and the parametric instability; so it is difficult to obtain the
exact solution for viscous fluid under this condition. A series of
simplifications is essential to solve the problem.

It is well known that the Navier–Stokes equations are satisfied
by potential flow, and the viscous term is identically zero when
the vorticity is zero, but the viscous stresses are not zero [21]. The
differences between the results predicted by the viscous flow and
those given by the exact viscous theory are fairly minor in that
shear stress is negligible. Joseph et al. [22,23] constructed the vis-
cous potential flowmodels for both Rayleigh–Taylor instability and

the K–H instability problems. Their results illustrated that max-
imum growth rate, dominative wavenumber, and critical wave-
length (which the viscous potential flow theory presents) have
only minor errors compared to those given by the same viscous
theory. Viscosity also has a significant effect on the instability of
liquid sheets. Because of the success of viscous potential flow in the
analysis of Rayleigh–Taylor and K-H instability, the linear stability
theory and the viscous potential flow theory have been combined
here to investigate the instability of the air-assisted liquid sheet
in the presence of acoustic oscillations. From an analytical point
of view, this paper discusses the effects of the acoustic oscillations
and the physical parameters of viscous liquid sheets on the maxi-
mum temporal growth rate and the dominant wavenumber.

2. Governing equations

Fig. 1 shows the schematic diagram of a two-dimensional air-
assisted liquid sheet with a uniform thickness 2a, surface tension
σ , and dynamic viscosity µ. For the convenience of derivation, the
problem is set in a coordinate systemmovingwith the liquid sheet,
which is surrounded by a gaseous flowwith a velocity U . The coor-
dinate system is chosen so that the x axis is parallel to the direction
of the basic flowand the y axis is normal to the unperturbed surface
of the liquid sheet, with the origin located in the middle of the
nozzle exit. Assumptions aremade to suppress the nonlinear terms
in themomentum equations: The gas is assumed to be inviscid, the
liquid incompressible, and the densities of liquid and gas are ρl and
ρg , respectively. The effect of gravity is neglected.

In this work, acoustic oscillations are expressed by the oscilla-
tions of gas velocity or density, only the oscillation amplitude is
a function of time. In the presence of acoustic oscillations in the
range of 13–3 × 106 Hz [14], it can be assumed that gas velocity
and density are constant in an infinitely short time, but vary in a
finite time. Therefore, the linear stability theory can be employed
for infinitely small time ∆t , and the gas velocity and density vary
in finite time t , similar to the technique of Dityakin et al. [14].
Because of the complexity of acoustic oscillations, only sinusoidal
oscillations of gas velocity and density are studied in this work

When disturbances begin, upper and lower interfaces are dis-
placed and regarded to be one of the following forms:

y = (−1)ja + η (x, t) , for sinuousmode

y = (−1)ja + (−1)jη (x, t) , for varicosemode
η (x, t) = D (t) exp (ikx)

(1)

where j = 0 and j = 1 represent the upper and the lower
surfaces, respectively. k = 2π/λ is the wavenumber of the surface
wave, with λ being the wave length. The entire flow field is cor-
respondingly disturbed and deviates from the base (undisturbed)
flow described above.

According to Funada et al. [22], the normal stress is an ex-
tensional rather than a shear stress, and it is activated by waves
on the liquid; the waves are induced more by pressure than by
shear. Therefore, the neglect of shear could be reasonable in wave
motions, whose viscous resistance is not negligible; this is the
situation which may be approximated well by viscous potential
flow. In addition, according to Joseph et al. [21], if the momentum
equation holds for potential flow, the following condition must be
satisfied:

∇ × (∇ · S) = 0

That is, there exists a real function ς such that:

∇ · S = ∇ς

where S is extra stress given by the fluid constitutive equation; ς
is a real function, and ς = 0 is suitable for Newtonian fluids of



Download English Version:

https://daneshyari.com/en/article/7051110

Download Persian Version:

https://daneshyari.com/article/7051110

Daneshyari.com

https://daneshyari.com/en/article/7051110
https://daneshyari.com/article/7051110
https://daneshyari.com

