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a b s t r a c t

This numerical study analyzes the stability of a steady axisymmetric air–water flow driven by a rotating
top disk in a sealed semispherical container. A motivation is possible applications in aerial bioreactors.
The centrifugal force pushes the air to periphery near the disk, downward near sidewall, toward the axis
near the interface, and upward near the axis. This meridional circulation of air drives the water counter-
circulation while the centrifugal force tends to induce the water co-circulation. Their competition results
in the development of a three-eddy pattern as the rotation intensifies. The air circulation and thewater co-
circulation are separated by a thin layer of water counter-circulation. It is shown that the time-oscillatory
helical instability emerges when the three-eddy pattern is well formed. The azimuthal wave number
is m = 1 in the shallow-water case and m = 2 otherwise. The analysis of flow patterns and critical-
disturbance energy distributions indicates that the instability emerges in the air domain and likely is of
the shear-layer type.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

An intriguing and important fluid-mechanics phenomenon is
the emergence of a local circulation cell in a swirling flow, often re-
ferred to as vortex breakdown (VB). VB applications include delta-
wing aircraft, where VB is dangerous causing an abrupt change
in lift and drag, combustion chambers, where VB is beneficial
stabilizing flame, andnatural swirling jets like tornadoes,whereVB
decreases the twister strength. Escudier [1] performed a compre-
hensive review of early VB studies. More recent works, including
VB control strategies, are discussed in Ref. [2].

Vogel [3] and Escudier [4] initiated fundamental VB studies
in a sealed cylindrical container with one end disk rotating. An
advantage is the closed domain with well-defined and controlled
boundary conditions allowing for meaningful comparisons of ex-
perimental and numerical results. They well agree as was first
shown by Lopez [5]. The analysis of the Vogel–Escudier flow helps
understand the VB nature. A recent view is that VB develops via the
swirl-decay mechanism [6,7].

While single-fluid VB flows have been studied rather in detail,
two-fluid VB flows have not attracted much attention until re-
cent time. The situation changed with the development of aerial
bioreactors where air–water flows are used for the growth of
tissue culture [8]. The air flow transports the oxygen, required for
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tissue growth, to the interface and the water circulation enhances
mixing of the dissolved oxygen with other ingredients. The tissue
fraction is small compared with that of water and is neglected in
the studies of flowpatterns. The bioreactor applications stimulated
the experimental investigations by Lo Jacono et al. [9] and the nu-
merical simulations by Liow et al. [10,11]. Early numerical studies
modeled the gas–liquid interface as a symmetry plane [12] and as
a deformable stress-free surface [13]. The first work, which is free
from these idealizations of the interface, was performed by Brady
et al. [14,15].

Further research has revealed that two-fluid VB flows have a
number of interesting features absent in single-fluid flows. One
striking feature, observed also in the current study, is the existence
of a thin circulation layer (TCL) adjacent to the interface. A TCL
attached to the entire interface from below was found in water-
spout flows occurring in cylindrical [16] and semispherical [17]
containers.

Another striking feature is the emergence of an off-axis VB ring
in the depth of a lower fluid away from the interface, axis, and
walls [18]. Since eddies arise in both fluids, their variety is rich and
transformations are numerous. For example, eighteen topological
metamorphoses follow each other as the water volume fraction
increases in a truncated conical container where a creeping air–
water flow is induced by the slowly rotating top disk [19]. The
diversity of flow cells and their metamorphoses is even more en-
riched by theMoffatt eddies [20], which develop near intersections
of the end and side walls [21].
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The resulting rather complicated topology raises a question
about the flow stability. The stability of one-fluid VB flows in a
cylindrical container has been investigated rather in detail. The
numerical study of Gelfgat et al. [22,23] showed that the Vogel–
Escudier flow can become unstable at either smaller or larger Re
than that, at which VB emerges, depending on the length-to-radius
ratio, H. The experimental and numerical studies by Escudier [4]
and Sorensen et al. [24–26] documented that, as Re increases, the
steady axisymmetric VB bubble first develops for H < 3.2. For
larger H, the flow first becomes unstable with respect to 3D time-
oscillatory disturbances with m = 3 for 3.2<H <4.3, m = 2 for
4.3<H <5.2, and m = 4 for 5.2<H <5.5; m is the azimuthal
wave number. Herrada et al. [7] found that this instability is of the
shear-layer type developing for H >5.5 as well. Unsteady three-
dimensional flows resulting from the instability were studied in
Refs. [27–29].

Here we numerically investigate the stability of air–water flow
in a semispherical container studied by Balci et al. [17]. This flow
seems the most appropriate for bioreactor applications since the
number of eddies, which can damage the tissue, is minimal here.
In the cylindrical bioreactors [9–12], a set of eddies is located near
the sidewall-bottom intersection [16]. This eddies are absent in a
semispherical container. Onemore advantage is that semispherical
geometry enhances the streamline convergence toward the axis.
This convergence strengthens swirl and therefore the centrifugal
force, which drives the meridional circulation. Thus, the near-
stagnant corner region is removed and the global circulation of
ingredients is enhanced.

There is a technical difficulty of studying the stability of a
two-fluid flow: the linearization of a rather complicated relation
describing the balance of normal stresses at the bent interface. To
overcome this problem, an efficient routine was elaborated [30],
which in addition facilitates numerical simulations. The routine
includes (i) mappings, converting the time-dependent upper and
lower fluid regions onto fixed squared domains, (ii) a symbolic
toolbox to calculate the analytical Jacobians, and (iii) the Cheby-
shev grid in both radial and axial directions. Herrada & Montanero
proved the method efficiency in their study of liquid-bridge dy-
namics [30]. Here this numerical technique, being modified and
applied for the hemispherical problem, helps investigate and un-
derstand the instability nature.

In the rest of this paper, we formulate the problem in Section
2, describe the numerical technique in Section 3, explore the flow
stability at the water height hw , being 0.8, 06, 0.4, and 0.2 of the
disk radius R, in Section 4, summarize the results in Section 5, and
verify their grid-independence in Appendix.

2. Problem formulation

2.1. Flow geometry

Fig. 1 is a problem schematic. The lower part, 0 < z < hw ,
of the semispherical container is filled with water, the upper part,
hw < z < R, is filledwith air; r ,φ, and z are cylindrical coordinates;
and g is the gravitational acceleration. The interface is depicted
by the thin horizontal line, z = hw . The semispherical wall is
stationary. The disk lid, located at z = R, rotates with angular
velocity Ω; R is the disk and hemisphere radius, which serves
as a length scale. The dimensionless control parameters are the
water fraction, characterized by the water height Hw = hw/R, and
the Reynolds number, Re = ΩR2/νw , characterizing the rotation
strength; νw is the kinematic viscosity of water. One our goal is to
explore (i) the development of flow instability, as Re increases at a
fixed Hw , and (ii) how the critical parameters depend on the water
fraction. To this end, we consider Hw = 0.2, 0.4, 0.6, and 0.8.

Fig. 1. Schematic of the problem. The lid only rotates.

2.2. Governing equations

Using R, 1/Ω , ΩR, and ρwΩ2R2 as scales for length, time, veloc-
ity, and pressure, respectively, renders all variables dimensionless.
We consider a flow of two viscous incompressible immiscible
fluids governed by the Navier–Stokes equations,
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a scalar field, (u, v, w) are the velocity components in cylindrical
coordinates (r, φ, z), t is time, and p is pressure. The coefficients,ρn
and νn, are both equal 1 at n = 1 (in the water) while ρn = ρw/ρa
and νn = νa/νw at n = 2 (in the air).

We denote the list (u, v, w, p) as V , and look for a solution of
the system (1)–(4) in the form

V = Vb (r, z) + εVd (r, z) e(imφ−iωt)
+ c.c., (5)

where subscripts ‘‘b’’ and ‘‘d’’ denote the base flow and a distur-
bance, respectively; c.c. denotes the complex conjugate of the
preceding term; ε ≪1 is an amplitude; integer m is an azimuthal
wave number; and ω = ωr + iωi is a complex number to be
found, with frequency ωr and growth rate of disturbance ωi. For
a decaying (growing) disturbance, ωi is negative (positive). The
equations governing the base flow result from substituting (5)
in system (1)–(4) and setting ε = 0. The terms of order O (ε)

constitute equations governing infinitesimal disturbances.

2.3. Boundary conditions

Eqs. (1)–(4) are solved under the following boundary condi-
tions:

(i) Regularity at the axis, 0 < z < R, r = 0:

(a) u = v = 0, ∂w/∂r = 0 (basic flowandm = 0disturbances),
(b) wd = 0, ud + mvd = 0, ∂ud/∂r = 0 (m = 1 disturbances)
(c) wd = ud = vd = 0 (m >1 disturbances)
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