
European Journal of Mechanics B/Fluids 60 (2016) 110–118

Contents lists available at ScienceDirect

European Journal of Mechanics B/Fluids

journal homepage: www.elsevier.com/locate/ejmflu

Nonlinear evolution equations in crossing seas in the presence of
uniform wind flow
Sudipta Senapati a, Sumana Kundu b, S. Debsarma c,∗, K.P. Das c

a Department of Mathematics, Abhedananda Mahavidyalaya, Sainthia, Birbhum-731234, India
b Salkia Mrigendra Dutta Smriti Balika Vidyapith (High), Salkia, Howrah-711106, India
c Department of Applied Mathematics, University of Calcutta, 92, A.P.C. Road, Kolkata-700009, India

a r t i c l e i n f o

Article history:
Received 23 November 2015
Received in revised form
15 March 2016
Accepted 30 June 2016
Available online 21 August 2016

Keywords:
Crossing seas
Evolution equation
Gravity waves
Modulational instability
Wind effect

a b s t r a c t

The effect of uniformwind flow in a situation of crossing sea states is studied here on the stability analysis
for a pair of obliquely interacting uniform wave trains. It is observed that the growth rate of instability in
crossing seas in the presence of wind flow is much higher than that in the absence of wind flow. It is also
found that the growth rate of instability increases as the wind flow velocity increases up to some critical
velocity beyond which the wave becomes linearly unstable and consequently the present analysis does
not remain valid. The growth rate of instability obtained here is also greater than that for a single wave
packet propagating in the presence of uniform wind flow.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

The problem of evolution of one surface wave packet in the
presence of another surface wave packet has been considered by
many authors [1–10] in different contexts. The two wave packets
may be co-propagating waves or counter-propagating waves or
obliquely propagating waves. Onorato et al. [1] studied nonlinear
interaction of two co-propagating waves in shallow water. They
showed that a systemof defocusing coupled nonlinear Schrödinger
equations can exhibit modulational instability if higher order
dispersive terms are retained in the system. Debsarma and
Das [2] also considered two co-propagating capillary–gravitywave
packets. They derived fourth order non-linear evolution equations
for the two wave packets and showed that the growth rate of
instability of a uniform surface gravity wave train increases due to
the presence of a capillary–gravity wave train. Nonlinear evolution
of counter-propagating wave packets was considered by Pierce
and Knobloch [3], Debsarma and Das [4]. Pierce and Knobloch [3]
derived third order nonlocal mean-field evolution equations for
two counter-propagating capillary–gravity wave packets on the
surface of water of finite depth. Debsarma and Das [4] considered
modification of this water wave model by including fourth order
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nonlinear terms in the evolution equations for the case of infinite
depthwater and carried out stability analysis of a uniform standing
wave train under longitudinal perturbations. Dhar and Das [5]
carried out stability analysis of a uniform Stokes wave train in
the presence of another obliquely propagating Stokes wave train
assuming that the space variation of amplitude takes place only in
a direction along which the group velocity projection of the two
waves overlap. They observed significant deviations in the growth
rate of instability at fourth order compared to that at the third
order.

In recent years, the dynamics of two obliquely interacting wave
systems have become an important topic of investigation. The rea-
son is that the growth rate of modulational instability for a pair of
obliquely interacting uniformwave trains is much larger than that
for a single wave train. This was first shown by Onorato et al. [6].
They carried out stability analysis for unidirectional perturbations
only. Later on, Shukla et al. [7] extended the analysis to incorporate
bi-directional perturbations. Laine-Pearson [8] also studiedweakly
nonlinear interaction of two-wave systems propagating in differ-
ent directions on deep water. He showed that the growth rate of
long wave instability of two obliquely interacting waves can be
larger than those for resonant interaction of short-crested waves.
Because of higher growth rates in crossing sea states some of the
authors [Onorato et al. [6], Laine-Pearson [8]] have suggestedmod-
ulational instability as a possible mechanism for the formation of
large amplitude rogue waves in crossing sea states. The evolution
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equations derived by Onorato et al. [6], Shukla et al. [7], Laine-
Pearson [8] are at the lowest order, i.e., at the third order of non-
linearity and under constant atmospheric pressure. The effect of
higher order nonlinearity on modulational instability in crossing
sea states is studied in Gramstad and Trulsen [9] and also in Deb-
sarma et al. [10].

Ruban [11] performed numerical experiments for long-crested
water waves assuming quasi-random initial conditions. As an
initial state, he considered a superposition of quasi-randomly
placed wave packets which include 25 wave packets having wave
number vector (60,2), 25 packets having wave vector (50,0),
16 packets with (40,−2), and 12 packets with (30,1). In his
experiment, a single roguewavewas formed spontaneously which
existed for several wave periods without significant change of its
amplitude. In another experiment, Ruban [12] considered crossing
sea states situation defined by twowave vectors

−→
k 0 −∇

−→
k /2 and

−→
k 0 + ∇

−→
k /2 where |∇

−→
k | ≪ |

−→
k 0|. He observed two different

kinds of roguewaves forming in twodifferent situations depending
on the angle between the vectors

−→
k 0 and∇

−→
k . Some of the recent

developments of rogue wave phenomenon have been reported by
18 authors including Ruban et al. [13] in the special issue of the
European Physical Journal, July 2010.

In the present paper, we have considered crossing sea states
situation in the presence of uniform wind blowing over water of
infinite depth. Two gravitywave packets are propagating obliquely
at the air–water interface making equal angles with the direction
of wind flow.

Themechanisms for the generation of oceanwaves bywind and
the coupling between ocean waves and wind has a long history.
Miles [14] gave an explanation of the generation mechanism of
water waves by considering amodel of an inviscid shear flow in air
over water. Extension of Miles theory and further developments
on this topic have been presented very nicely in Phillips [15].
The effect of uniform wind flow on the propagation of a quasi-
chromatic surface gravity wave packet has been studied by Dhar
and Das [16]. The model presented here is an extension of their
work to the situation of crossing sea states. Brunetti et al. [17]
derived wind forced nonlinear Schrödinger equation under the
assumption that the growth rate of the waves is of the order of
wave steepness. Asymptotic stability of wind forced modulations
in a situation of crossing sea states is recently investigated in
Debsarma et al. [18,19].

The paper is organized as follows: In Section 2, we have written
down the basic equations governing the model as mentioned
above. In Section 3, we have derived evolution equations of the
two wave packets. The evolution equations derived here remain
valid as long as the wind velocity is less than a critical velocity. The
reason is that a wave becomes linearly unstable when the wind
velocity is greater than this critical velocity. For the linearly stable
case, twodifferentmodes ofwavepropagation are possible.We call
them as positive and negative modes. In Section 4, we have made
stability analysis of two wind-flow modified uniform wave trains.
We have plotted growth rate of instability in the perturbed wave
number plane for different values of θ , twice of which is the angle
between the directions of propagation of the two wave packets.
The growth rate of instability have been shown in figures for both
of positive and negative modes of wave propagation.

2. Governing equations

We consider crossing seas in the presence of wind blowing
uniformly over water. We assume that before the onset of water
wave motion wind flows over water with a constant velocity U in
a direction parallel to x-axis. The undisturbed interface between
air and water is taken as the xy-plane and z-axis is taken positive

vertically upwards. We take z = ζ (x, y, t) to be the equation to
the wavy interface at any time t . Let ρw and ρa be the densities of
water and air, respectively. The perturbed velocity potentials φw
and φa of water and air, respectively, satisfy Laplace equations.

∇
2φw = 0, −∞ < z < ζ (1a)

∇
2φa = 0, ζ < z < ∞. (1b)

The kinematic boundary condition at the interface is
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The dynamic boundary condition to be satisfied at the interface is
∂φw
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− r
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= −
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
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where r = ρa/ρw . At infinity, the velocity potentials φw and φa
satisfy the following conditions:

φw → 0 as z → −∞ (4a)
φa → 0 as z → ∞. (4b)

Considering the linearized form of Eqs. (1)–(4), we see that the
wave number (k, l) and frequency ω of a wave propagating at the
air–water interface satisfy the following linear dispersion relation:

D(ω, k, l) ≡ ω2
+ r(ω − Uk)2 − g(1 − r)


k2 + l2 = 0. (5)

Eq. (5) gives the following two values of ω:

ω± =
rUk ±


(1 − r2)gk0 − rU2k2

1 + r
(6)

where k0 =

(k2 + l2). If the wave propagates with frequency

ω = ω+ (or ω−), we call it to be positive mode (or negative
mode) ofwave propagation. Eq. (6) also shows that awave ofwave-
number (k, l) becomes linearly unstable if the wind flow velocity
U satisfies the following condition:

|U| > Uc where Uc =


(1 − r2)gk0

rk2
. (7a)

It is important to note that the critical velocity depends on the
carrier wave number k0 of either wave packet. Setting k = k0 cos θ
and l = k0 sin θ , we find from (7a) that

1
√
k0

= Uc cos θ


r
(1 − r2)g

(7b)

where θ is the angle made by the direction of propagation of
either wave packet with the direction of wind velocity. Since, for
a fixed θ , Uc is inversely proportional to the square root of k0, Uc
is quite large when k0 is small. Thus, there exists a wide range of
wind velocity U for which there is no linear instability of waves.
In Fig. 1, we have plotted dimensional values of Uc against k0 for
different values of θ , using Eq. (7b). It is reported in Kjeldsen [20]
that during the accident of Norwegian ship ‘NORSE VARIANT’ in
1973 there was a strong northerly wind with wind velocity near
to 60 knots[1 knot = 0.514 m/s]. In Proudman [21], some
observed values of wind speed over North Atlantic, North Pacific,
South Pacific, and Indian Ocean are given which lie in the range
7.8–23 cm/s. In our model, we assume that the wind flows with
a velocity U whose magnitude is much less than the critical value
Uc . Under such an assumption, we have investigated modulational
instability of a pair of uniform wave trains in Section 4.
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