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a b s t r a c t

The aeroelastic galloping of a cantileverwith attached prismhas recently attracted the attention of several
researchers as a way to harvest energy from an airstream. This arrangement is not entirely analogous
to that of classical Transverse Galloping (TG) since the instantaneous attitude of the galloping body
(prism) with respect to the incident flow depends both on the velocity of the galloping body and wind
speed (like in TG) but also on the rotation angle at the cantilever free end. A new governing parameter
emerges, namely the ratio of the cross-section length of the prism to the beam length δ, and its effect on
the galloping dynamics and power output needs to be studied. To this end, a theoretical model is here
developed where the influence of δ is considered.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Flow-induced oscillations by Transverse Galloping (TG) were
pointed out by Barrero-Gil et al. [1] as a potential source for energy
harvesting from an airstream. TG is a fluid-elastic instability that
appears in some elastic bluff bodies when the velocity of the inci-
dent flow exceeds a critical value. Then, oscillatory motion (trans-
verse to the flow) develops with increasing amplitude until the
energy dissipated per cycle by mechanical damping balances the
energy input per cycle from the flow (for a detailed introduction to
TG the reader is referred to Parkinson [2], or Paidoussis et al. [3]). If
the geometry of the body and the elastic properties are appropri-
ate, the TG instability may appear at low flow velocities and with
large excitation amplitudes, making TG a very promising way to
harvest energy successfully [1,4,5].

Barrero-Gil et al. [1] made an analytical treatment to give
the level of mechanical power extraction as a function of the
geometry of the cross-section of the galloping body, its mechanical
parameters, and flow velocity. Findings like the maximum
efficiency achievable or the wind speed at which this maximum
occurs were reported. Since then, several researches have studied
how to implement the concept in a real energy harvester, with
emphasis in low power generation systems, of the order of
milli-Watts or tens of milli-Watts (see, for example, Sirohi and
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Mahadik [6,7], Zhao et al. [8], Yang et al. [9], Xu-Xu et al. [10]),
with characteristic dimensions of the order of centimeters. They
have been focused on experimental arrangements where a rigid
galloping body is fixed to the free end of a cantilevered beam
(see Fig. 1). For electricity conversion piezoelectric sheets are
usually attached to the base of the beam. Under the effect of an
airstream, for high enough air speed, oscillations by galloping take
place and the induced strain in the piezoelectric patches produces
an electrical current which is dissipated at the electrical load RL
(see, for example, Yang et al. [9]). However, in this cantilevered
arrangement the situation is not entirely analogous to that of
pure TG analyzed in Barrero-Gil et al. [1], since the instantaneous
attitude of the galloping body with respect to the incident flow
depends on the velocity of galloping body and wind speed (like
in TG) but also on the rotation angle at the beam free end (see
Fig. 1; Kluger et al. [11]). A new governing parameter appears,
namely the ratio of the cross-section characteristic length D to the
cantilever beam length Lb, defined as δ = 3D/(2Lb), and its role
on the dynamics of the body and electrical power output should
be studied. With this idea in mind, we present here a theoretical
model of a generic energy harvester where the galloping body
is cantilevered mounted. Quasi-steady conditions are assumed
to model aerodynamic forces and a kinematic relationship is
introduced for the instantaneous angle of attack where rotation
of the beam is considered. An equivalent circuit model is
employed for the piezoelectric sheets. The mathematical model is
approximately solved by applying the standard Harmonic Balance
Method, and analyzed in detail. The analysis is focused on the
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Fig. 1. (a) Typical arrangement piezoelectric energy harvesting from galloping of a
cantilevered prism. (b) One-degree-of-freedommodel: vertical displacement of the
rigid bluff body.

impact of the system dimensionless parameters on the efficiency
of energy harvested. As a novelty, the analysis allows to see clearly
that δ has a negative impact into the electrical power output.

First of all, in Section 2, an electro-aero-elastic model is intro-
duced. An analytical approximate solution is found in Section 3 that
allows us to get physical insight and to discuss the influence of the
length of the beam and other governing parameters on both the
galloping body dynamics and electrical power. Analytical predic-
tions are compared with experimental results from Zhao et al. [8]
in Section 4. Good agreement is found. Finally, concluding remarks
are drawn in Section 5.

2. Theoretical model

Let us introduce a one-degree-of-freedommodel to describe the
transverse displacement of the prism shown in Fig. 1. It is based on
the equilibrium between inertia, damping, and stiffness forces, as
well as vertical aerodynamic force, and the electromechanical force
induced by the piezoelectric transducer. That is,

mÿ + cẏ + ky =
1
2
ρU2DLCY − Fp, (1)

where y denotes the transverse position of the prism, m is the
equivalent mass of the prism, c is an equivalent damping constant,
k is the equivalent stiffness constant, ρ is the fluid density, U is
the undisturbed velocity of the incident flow, D the side length of
the prism’s cross-section and L its length, CY is the instantaneous
aerodynamic force coefficient in the transverse direction to the
incident flow, and Fp is the electromechanical force in the y
direction due to the piezoelectric effect. Finally, the dot symbol
stands for differentiation with respect to physical time t .

The equivalent (or effective) mass of the prism is given by
the prism mass plus the effective mass of cantilever beam. The
effective mass of cantilever beam can be approximated as 0.25
times the mass of the cantilever beam [12]. The equivalent
damping and stiffness constants can be obtained experimentally
from a free decay tests in absence of fluid flow by measuring the
decay rate of the amplitude and frequency of oscillations.

Note that, for the sake of simplicity, damping and stiffness
forces have been considered linear, which is a realistic approxima-
tion when transverse displacements of the prism are small com-
pared to the length of the beam.

2.1. Aerodynamic force

In order to describe CY , the quasi-steady hypothesis is usually
resorted to (see Paidoussis et al. [2]), since galloping is typically

a low-frequency oscillation phenomenon where the characteristic
timescale of the prism oscillation (of order 2π(m/k)1/2) is much
larger than the characteristic timescale of the flow (of order
D/U). Then, the aerodynamic force is only dependent on the
instantaneous attitude of the prism with respect to the incident
flow, which can be described by the effective angle of attack α.
From Fig. 1(b),

tan(α + θ) =
tanα + tan θ

1 − tanα tan θ
, (2)

where θ is the rotation angle at the free end of the beam; α and
θ are positive in the counterclockwise direction. Assuming that α
and θ are small it follows that

tan(α + θ) ≃ tanα + tan θ. (3)

For a uniform cantilevered beam, θ = 3y/(2Lb) (see Kluger et al.
[11]), where Lb is the length of the beam. In addition, tan(α + θ) =

ẏ/U so it follows that

tanα ≃
ẏ
U

−
3y
2Lb

. (4)

For our theoretical analysis, to maintain a compromise between
development complexity and accuracy, a cubic polynomial can be
considered enough (see Blevins [13, p. 130]) to approximate the
vertical aerodynamic force coefficient dependence with tanα, so
that

CY = a1 tanα + a3(tanα)3, (5)

where a1 (>0) and a3 (<0) are the empirical coefficients to fit by
a polynomial the CY versus tan(α) dependence measured in static
tests (normally in wind tunnel). The values of a1 and a3 depend
on the cross-section geometry of the prism. We refer the reader
to Blevins [13], Bokaian and Geoola [14] or Barrero-Gil et al. [1]
in order to obtain more information and typical values. Then, the
aerodynamic force coefficient is

CY = a1


ẏ
U

−
3y
2Lb


+ a3


ẏ
U

−
3y
2Lb

3

, (6)

which can be simplified to

CY = a1


ẏ
U

−
3y
2Lb


+ a3


ẏ
U

3

+
27y2ẏ
4L2bU


, (7)

if nonlinear stiffness terms are neglected, whichmakes sense since
their effect in the overall response is expected to be small when
the bluff body is under the action of light fluids (airstreams). Let
us discuss this point in detail by comparing the nonlinear stiffness
fluid forceFY
FY =

1
2
ρU2DL


27y3

8L3b
−

9ẏ2y
2U2Lb


, (8)

and the stiffness force Fs = ky. That isFY
Fs

=
ρU2DL

2k


27y2

8L3b
−

9ẏ2

2U2Lb


. (9)

Taking y ∼ A, where A is the steady-state amplitude of oscillations,
ẏ ∼ AωN where ω2

N = k/m is the natural frequency of oscillations,
it follows thatFY
Fs

∼
a3
2m∗


A∗2δ3U∗2

− 3A∗2δ

, (10)

where m∗
= m/(ρD2L) is the mass ratio, A∗

= A/D is the normal-
ized steady state amplitude of oscillations, δ = 3D/(2Lb), andU∗

=

U/(ωND) is the reduced velocity. Note that nonlinear stiffness fluid
force terms are expected to be negligible for large m∗, which is a
common situation when the fluid is light (airstreams for example).
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