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a b s t r a c t

The swimming of a prolate spheroid immersed in a viscous incompressible fluid and performing surface
deformations periodically in time is studied on the basis of Stokes’ equations of low Reynolds number
hydrodynamics. The average over a period of time of the translational and rotational swimming velocity
and the rate of dissipation are given by integral expressions of second order in the amplitude of surface
deformations. The first order flow velocity and pressure, as functions of prolate spheroidal coordinates,
are expressed as sums of basic solutions of Stokes’ equations. Sets of superposition coefficients of these
solutions which optimize the mean translational swimming speed for given power are derived from an
eigenvalue problem. The maximum eigenvalue is a measure of the efficiency of the optimal stroke within
the chosen class of motions. The maximum eigenvalue for sets of low multipole order is found to be a
strongly increasing function of the aspect ratio of the spheroid.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

The theory of the swimming of micro-organisms in a viscous
incompressible fluid is based on the Stokes equations of low
Reynolds number hydrodynamics [1]. In this regime inertia plays
no role and the effect of swimming can be understood on the basis
of purely viscous flow. It was shown by Taylor [2] in the example
of the swimming of a planar sheet distorted by a transverse surface
wave that the effect is purely kinematic. His calculation to second
order in the wave amplitude leads to a swimming velocity which
is independent of the viscosity of the fluid. Taylor’s analysis was
subsequently extended to a squirming sphere by Lighthill [3]. Blake
corrected thiswork and applied it in a spherical envelope approach
to ciliary propulsion [4].

The calculations of mean translational swimming velocity and
rate of dissipation to second order in the amplitude of surface
distortion are complicated, and for simplicity, the analysis for a
sphere was restricted to axial strokes. The extension to general
strokeswas derived only recently [5]. The extension also allows the
mean rotational swimming velocity achieved by a general stroke to
be calculated.

In the following we consider Stokesian swimming of a
prolate spheroid, again to second order in the amplitude of
surface distortion. Since arbitrary aspect ratio is allowed, the
model provides interesting physical applications. In particular the
swimming of Paramecium should be well described by the model.
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Paramecium rotates about its long axis as it swims, so that it is
important to consider both the mean translational and rotational
swimming velocity. The motion of a prolate spheroid on the basis
of active particle theory was studied by Leshansky et al. [6] for a
particular mode of steady tangential surface distortion.

The reciprocal theorem [1] is used to derive integral expressions
for the mean translational and rotational swimming velocity
which are bilinear in the amplitude of surface displacements.
We show how these expressions, when written in terms of
prolate spheroidal coordinates, can be reduced to one-dimensional
integrals over the polar variable. In the process we encounter
identities which have been known for a long time in terms of
ellipsoidal coordinates [7–9]. The validity of the identities was
explained recently by Kim [10,11] on the basis of a symmetry
property of the Stokes double-layer operator [12].

In the calculation, the first order flow velocities and pressures
are expanded in terms of a basic set of solutions of the steady
state Stokes equations. We derive these solutions as functions of
prolate spheroidal coordinates. Themean swimming velocities and
the mean rate of dissipation become bilinear expressions in terms
of the amplitudes of the mode functions involving three matrices
corresponding to the chosen representation. As usual, optimization
of the translational swimming speed for given power leads to
an eigenvalue problem [13–17]. The maximum eigenvalue is a
measure of the efficiency of the optimal stroke within the chosen
class of motions. In contrast to the case of a sphere, the three
matrices cannot be evaluated analytically. We derive numerical
results for the maximum eigenvalue for a wide range of aspect
ratios, as well as for the corresponding mean rate of rotation.

http://dx.doi.org/10.1016/j.euromechflu.2016.06.013
0997-7546/© 2016 Elsevier Masson SAS. All rights reserved.

http://dx.doi.org/10.1016/j.euromechflu.2016.06.013
http://www.elsevier.com/locate/ejmflu
http://www.elsevier.com/locate/ejmflu
mailto:ufelder@physik.rwth-aachen.de
http://dx.doi.org/10.1016/j.euromechflu.2016.06.013


2 B.U. Felderhof / European Journal of Mechanics B/Fluids ( ) –

2. Swimming velocity and power

We consider a prolate spheroid of major semi-axis a and minor
semi-axis b immersed in a viscous incompressible fluid of shear
viscosity ηs. We choose Cartesian coordinates such that the z axis
is in the direction of the long axis. At low Reynolds number and on
a slow time scale the flow velocity v(r, t) and the pressure p(r, t)
satisfy the Stokes equations

ηs∇
2v − ∇p = 0, ∇ · v = 0. (2.1)

The fluid is set in motion by distortions of the surface which are
periodic in time and lead to a time-dependent flow field as well as
to a swimming motion of the spheroid. The surface displacement
ξ(s, t) is defined as the vector distance

ξ = s′ − s (2.2)

of a point s′ on the displaced surface S(t) from the point s on the
spheroidwith surface S0. The fluid velocity v(r, t) in the rest frame
is required to satisfy [15]

v(s + ξ(s, t)) =
∂ξ(s, t)
∂t

, (2.3)

corresponding to a no-slip boundary condition. The instantaneous
translational swimming velocity U(t), the rotational swimming
velocity�(t), and the flow pattern (v, p) follow from the condition
that no net force or torque is exerted on the fluid. We evaluate
these quantities by a perturbation expansion in powers of the
displacement ξ(s, t).

To second order in ξ the flow velocity and the swimming
velocity take the form [15]

v(r, t) = v1(r, t)+ v2(r, t)+ · · · ,

U(t) = U2(t)+ · · · .
(2.4)

Both v1 and ξ are assumed to vary harmonically with frequency ω,
and can be expressed as

v1(r, t) = v1c(r) cosωt + v1s(r) sinωt,
ξ(s, t) = ξc(s) cosωt + ξs(s) sinωt. (2.5)

Expanding the no-slip condition Eq. (2.3) to second order we find
for the flow velocity at the surface

u1S(s, t) = v1

S0

=
∂ξ(s, t)
∂t

,

u2S(s, t) = v2

S0

= −ξ · ∇v1

S0
. (2.6)

In complex notation with v1 = vω exp(−iωt) the mean second
order surface velocity is given by

u2S(s) = −
1
2
Re(ξ∗ω · ∇)vω


S0
, (2.7)

where the overhead bar indicates a time-average over a period
T = 2π/ω.

The time-averaged second order flow velocity v(2)(r) and
corresponding mean pressure p(2)(r) satisfy the Stokes equations
Eq. (2.1) with boundary value v(2)(s) = u2S(s). Moreover the flow
tends to −U (2) −�(2) × r at infinity and satisfies the condition of
vanishing hydrodynamic force and torque. In the laboratory frame
this corresponds to the flow (u(2)(r), p(2)(r))with

u(2)(r) = U (2) + �(2) × r + v(2)(r). (2.8)

As a second flow we consider the solution of the Stokes friction
problem for solid body motion of the surface S0 with force F and

torque T exerted on the fluid. Applying the reciprocal theorem [1]
to the pair of flows we find the relation

F · U (2) + T · �(2) =


S0

n · σ fr · u2S dS0, (2.9)

where n is the outward normal to the surface S0 and σ fr is the
stress tensor for the Stokes friction problem with translation and
rotation.

We consider periodic surface distortions such that the mean
translational displacement of the spheroid is in the z direction and
the mean rotation is about the z axis. For the second order mean
translational swimming velocity U2 we have

U2 =
1
Fz


S0

n · σTz(s) · u2S(s) dS0, (2.10)

where σTz(s) is the stress exerted at the surface S0 when the
spheroid with no-slip boundary condition is subjected to a force
Fzez in the z direction. Similarly the second order mean rotational
swimming velocityΩ2 is given by

Ω2 =
1
Tz


S0

n · σRz(s) · u2S(s) dS0, (2.11)

where σRz(s) is the stress exerted at the surface S0 when the
spheroid with no-slip boundary condition is subjected to a torque
Tzez in the z direction.

To second order the mean rate of dissipation D2 is determined
entirely by the first order solution. It may be expressed as a surface
integral [15]

D2 = −
1
2
Re


S0

v∗

ω · σω · n dS0, (2.12)

where σω is the first order stress tensor, given by

σω = ηs(∇vω + [∇vω]T )− pωI . (2.13)

The mean rate of dissipation equals the power necessary to
generate the motion.

3. Mode functions

We use spheroidal coordinates (ξ , η, ϕ) in which the Cartesian
coordinates (x, y, z) are expressed as

x = c

(ξ 2 − 1)(1 − η2) cosϕ,

y = c

(ξ 2 − 1)(1 − η2) sinϕ,

z = −cξη, (3.1)

where c =
√
a2 − b2 is the semi-focal distance. The surface of the

spheroid corresponds to the value ξ0 given by

a = cξ0, b = c

ξ 20 − 1. (3.2)

The coordinates vary in the ranges ξ0 < ξ < ∞, −1 < η < 1,
0 < ϕ < 2π . For large ξ the surface ξ = constant becomes spher-
ical and the variable η can be identified with − cos θ , where θ is
the polar angle. The variable ϕ is the azimuthal angle. The coor-
dinates (ξ , η, ϕ) are identical to those introduced by Morse and
Feshbach [18], except for the minus sign in the last line of Eq. (3.1).
Our choice guarantees a right-handed system.

The metric coefficients are given by

h1 =
1
c


ξ 2 − 1
ξ 2 − η2

, h2 =
1
c


1 − η2

ξ 2 − η2
,

h3 =
1
c


1

(ξ 2 − 1)(1 − η2)
.

(3.3)
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