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a b s t r a c t

This paper proposes a relation for the added mass coefficient of spherical bubbles depending on void
fraction based on results obtained by a semi-analytical method.

This information is essential to completely characterize finely dispersed bubbly flows, where small
spherical gas bubbles are present in a continuous liquid phase.Most of the closure relations for Euler–Euler
or Euler–Lagrange models are obtained from experiments involving single bubbles. Their applicability to
systems with high void fraction is therefore questionable.

This paper uses solid harmonics to solve 3D potential flow around bubbles. Several configurations
were calculated for different numbers of particles and spatial configurations. Our results are compared
with previous studies. Depending on the model proposed by previous authors, added mass forces could
increase or decrease with void fraction. This paper solves these discrepancies by underlining the effect of
induced added mass.

The main purpose of this work is to develop simple formulas fitting our semi-analytical results. These
simple formulas are suitable for further use, particularly as added mass models for multiphase flow
averaged equations.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

We are concerned with the motion of a body surrounded by
a fluid. The fluid mass displaced by the body increases its inertia
which defines the added mass. The added mass force acting on a
body is defined as:

FM = −ρV Ĉ
dU
dt

, (1)

V stands for the volume of the body and ρ for the fluid density sur-
rounding the body. Its velocity U is expressed in the six degrees of
freedom (translation and rotation). Including rotation requires in-
clusion of torques in FM, which is therefore a 6 components vector.
Ĉ is a tensor with 6 × 6 components. If we only consider transla-
tion, FM becomes a 3 component vector and Ĉ a 3 × 3 component
tensor. Ĉ is called induced inertia tensor by Batchelor [1].

As a consequence of Ĉ, FM and dU/dt are generally misaligned
depending on the body shape and the presence of other bodies or
walls. This paper will only focus on the added mass coefficient of
spherical bodies (bubbles).
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This information is essential to completely characterize finely
dispersed bubbly flows, where small spherical gas bubbles are
present in a continuous liquid phase. Using either Porous Medium,
Euler–Euler or Euler–Lagrange models, some authors use the
widely accepted closure correlations (a.o. closure relations pro-
posed by Tomiyama et al. [2,3]). As underlined by Darmana et al.
[4], sincemost of the closures are empirically obtained from exper-
iments involving single bubble, their applicability to systems with
high void fraction is questionable. Moreover, even if some correla-
tions available in the literature take into account the effect of the
local void fraction on added mass, very few numerical models use
them. Ishii and Hibiki [5] propose the use of correlation depending
on void fraction proposed by Zuber [6] but Tomiyama et al. [2,3]
propose the use of the added mass of a single bubble.

In particular, the effect of induced added mass on surrounding
bubbles should be more appropriately emphasized. The induced
added mass is the force exerted by one accelerating body to
another through the fluid. When literature results are available,
comparison with our results will be made. This paper uses solid
harmonics to solve 3D potential flow around bubbles with various
configurations.

A sphere in an infinite fluidmedium experiences an addedmass
force collinear to its acceleration and the tensor Ĉ is reduced to
Ĉ = 0.5I. I stands for the identity tensor [7,8]. This means that
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a sphere displaces a volume of surrounding fluid equivalent to half
of its volume. For the sake of brevity, wewill study the addedmass
of spherical bodies which we will designate as bubbles.

Added mass forces are of interest in naval research (inertia
forces of underwater or floating objects), for the chemical industry
(bubble chamber), for the energy industry (oil and nuclear) and any
application involving multiphase fluid dynamics. These industrial
applications are particularly affected by two factors that can
strongly modify inertia forces on dispersed bubbles or particles:
presence of walls and other bubbles. A simple formula for Ĉ,
depending only on these two factors, is needed to construct a good
estimation of forces acting within a multiphase mixture.

Some of the simplest situations have already been solved ana-
lytically from the perspective of potential flow theory [6,7,9–13].
First authors [6,7,9–11] accordingly with the first formulation of
Zuber [6] found an increase of added mass with void fraction [13].
Wallis however found that the addedmass force decreaseswith the
void fraction [12]. Cai andWallis proposed amore general descrip-
tion of added mass with two limiting cases as the one suggested
by Zuber [6] corresponding to an upper bound and the one sug-
gested by Wallis [12] corresponding to the lower bound, with an
unknownparameterλ related to the external impedance of the cell
around the bubble. The external impedance depends on the bound-
ary conditions of the cell related to the bubble configuration. But
as this value remains unknown, the authors concluded that there
‘‘may not exist a universal definition of added mass for an array of
particles that can be applied to all the situations’’. Our paper solves
this issue and proposes a model that can be applied for any array
of identical spherical particles assuming a potential flow.

Some researchers have extended the first formulation of
Zuber [6]. For example, Spelt and Sangani include velocity fluctu-
ation effects [14] or Kushch et al. ellipsoidal bubble shape effects
[15]. Some researchers have conducted DNS simulations [16–18]
and finally few others have conducted experiments [19,20]. In the
case of two bubbles, the numerical results show no influence of
the Reynolds number (0.1–300) or of the acceleration parameter
(0.1–1000) on the added mass force and a very good agreement
between DNS and potential flow theory [17].

It is clear that the added mass force is a key parameter in
the description of multiphase systems. It is particularly important
in situations where the density ratio is large and the motion is
unsteady. Thus, in this paper, we use a semi analytical method to
explore the possibility of determining the added mass force in a
variety of important situations.

Following the introduction, the paper includes four sections. In
the first section, we expose a method to calculate the unsteady
potential flow for a cloud of bubbles. The second section presents
the procedure to deduce added mass force. The third section
presents results for two bubbles. The fourth section presents a new

formulation for the addedmass forces. This formula is compared to
resultswith a bubble close to awall, a row and a columnof bubbles.
The fifth section presents results for regular and random clouds
of bubbles and shows that the new model is able to accurately
predict the addedmass forces inside a cloud of bubbles. Finally, the
main results are summarized in the conclusion section. Appendices
are dedicated to readers wishing to have more information on the
methodology.

2. Potential flow

2.1. Solid harmonics

If Φ is the velocity potential, it is the solution of Laplace’s
equation ∇

2Φ = 0 and can therefore be expressed as:

Φ(r) =

∞
ℓ=0

ℓ
m=−ℓ

f mℓ R̃m
ℓ (r) + gm

ℓ S̃mℓ (r), (2)

where f mℓ and gm
ℓ are constants and R̃m

ℓ and S̃mℓ are respectively
the normalized regular and irregular solid harmonics, solutions of
Laplace’s equation :

R̃m
ℓ (r) = R̃m

ℓ (r, θ, ϕ) = (−1)
|m|+m

2 rℓỸm
ℓ (θ, ϕ) − ℓ ≤ m ≤ ℓ.

S̃mℓ (r) = S̃mℓ (r, θ, ϕ) = (−1)
|m|+m

2
Ỹm

ℓ (θ, ϕ)

rℓ+1
− ℓ ≤ m ≤ ℓ.

(3)

Ỹm
ℓ (θ, ϕ) are normalized spherical harmonics generally defined as

Ỹm
ℓ (θ, φ) =


(ℓ − |m|)!

(ℓ + |m|)!
P |m|

ℓ (cos θ) eimφ
− ℓ ≤ m ≤ ℓ (4)

where Pm
ℓ are the associated Legendre polynomials. Note that the

fully normalized associated Legendre polynomials are normalized
such that 1

−1


P̃m

ℓ

2
dx = 1 0 ≤ m ≤ ℓ. (5)

and are related to the unnormalized associated Legendre polyno-
mials by

P̃m
ℓ (x) = (−1)m


(2ℓ + 1)(ℓ − m)!

2(ℓ + m)!
Pm

ℓ (x) 0 ≤ m ≤ ℓ. (6)

Therefore, we can also define Ỹm
ℓ (θ, ϕ) as :

Ỹm
ℓ (θ, φ) = (−1)m


2

2ℓ + 1
P̃ |m|

ℓ (cos θ) eimφ
− ℓ ≤ m ≤ ℓ. (7)

For an isolated sphere of radius an and velocity (Un, θn = 0,
ϕn = 0) expressed in spherical coordinates, the velocity potential
is well known [7] and defined as :

φn = −
Una3n
2

cos θ

r2
= −

Una3n
2

z
r3

. (8)

Applying a rotation of angle θn around the y-axis and angle ϕn
around the z-axis, the general expression for the potential with the
velocity expressed in spherical coordinates (Un, θn, ϕn) is deduced:

φn(r) = −
Una3n
2r2

× [cos θn cos θ + sin θn sin θ (sinϕn sinϕ + cosϕn cosϕ)] . (9)

Introducing ẋn, ẏn, żn we have:

φn(r) = −
a3n
2r2

(żn cos θ + ẋn sin θ sinϕ + ẏn sin θ cosϕ) (10)
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