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ABSTRACT

This paper examines the mathematical operations performed developing the macroscopic equations of
change for total mass, species mass, momentum and energy starting from the microscopic Boltzmann
equation. In the standard literature on kinetic theory of gases, two formulations of the Boltzmann equation
are presented. That is, the Boltzmann equation can be formulated both in terms of the molecular velocity
and in terms of the peculiar velocity. In these two formulations of the Boltzmann equation two different
coordinate systems are employed. Consequently, two different sets of moment equations can be derived
from the Boltzmann equation being generalized frameworks for deducing the equations of change.
Dependent on the choice of the generalized property, the equations of change for mass, momentum,
and energy can be derived from the moment equations. The convenience of using two different
velocities, coordinate systems and generalized property definitions is not sufficient elucidated in the
literature. Hence, this paper outlines the use of the molecular and peculiar velocities in these frameworks
for deriving the equations of change for mass, species mass, momentum and energy. Moreover, for
completeness, the equations of change for single-component gases, multicomponent non-reacting gases,
and multicomponent reacting gases are derived. Thus, this paper presents a rigorous examination of the
various approaches for deriving the equations of change within the framework of the Boltzmann equation.
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1. Introduction

There are two main frameworks for deriving the transport
equations for mass, species mass, momentum, and energy. The two
frameworks are continuum mechanics and statistical mechanics.
In this paper, the focus is placed on kinetic theory of gases; a par-
ticular branch of statistical mechanics. Fig. 1 gives an overview of
the possible approaches for deriving equations of change for mass,
species mass, momentum, and energy.

For a thorough understanding of transport phenomena in
multicomponent mixtures the kinetic theory is considered a useful
analysis tool. Moreover, the classical kinetic theory of gases is also
used as basis deriving models for dispersed multiphase flows as
well as dispersed multiphase reactive flows.

A possible concept for describing the behavior of a large number
of particles can be found in statistical mechanics. Statistical meth-
ods aim at predicting the most probable behavior of a large collec-
tion of particles without being concerned with the precise states of
the individual particles. The most probable state of the ensemble
of particles is considered when calculating the macroscopic prop-
erties. Following the work by Boltzmann [2], the statistical unit
is the molecule and the statistical ensemble is a large number of
molecules.

In kinetic theory of gases, the gas is described in terms of a time
dependent distribution function which contains information of the
spatial distribution of the molecules as well as the molecular ve-
locity distribution. Moments of the distribution function represent

macroscopic (ensemble) mean quantities like mass density, gas ve-
locity, internal energy, kinetic energy flux, and pressure tensor. The
Boltzmann equation is an integro-differential equation which de-
scribes the evolution of the distribution function in the phase space
(which is composed of the physical and velocity spaces) and time. It
is possible to derive the equations of change for mass, species mass,
momentum and energy starting out from the Boltzmann equation.
That is, particular moments of the distribution function can be ob-
tained multiplying the Boltzmann equation by a quantity i (rep-
resenting successively molecular mass, momentum, and energy),
and thereafter integrating the equation over the whole velocity
space.

In the standard literature on kinetic theory of gases (e.g. [3,4]),
two formulations of the Boltzmann equation are presented. The
conventional formulation presents the Boltzmann equation with
the molecular velocity ¢ as the velocity coordinate. An alternative is
to formulate the Boltzmann equation using the peculiar velocity C
as the velocity coordinate. It follows that two different sets of gen-
eralized moment equations from the Boltzmann equation can be
derived and utilized deducing the generalized equations of change.
Dependent on the framework, the generalized property may be de-
fined in terms of the molecular velocity, ¥ = i (c), and/or in terms
of the peculiar velocity, 1 = ¥ (C) (Fig. 2). In particular, the choice
of framework influences on the manipulation complexity required
in order to derive the transport equations for the different energy
forms (i.e. total energy, kinetic energy, and internal energy). More-
over, the formulation in C might be considered more convenient



Download English Version:

https://daneshyari.com/en/article/7051213

Download Persian Version:

https://daneshyari.com/article/7051213

Daneshyari.com


https://daneshyari.com/en/article/7051213
https://daneshyari.com/article/7051213
https://daneshyari.com/

