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a b s t r a c t

In the study of surface waves in the presence of a shear current, a useful and much studied model is that
in which the shear flow has constant vorticity. Recently it was shown by Constantin (2011) that a flow of
constant vorticity can only permit waves travelling exactly upstream or downstream, but not at oblique
angles to the current, and several proofs to the same effect have appeared thereafter. Physical waves
cannot possibly adhere to such a restriction, however.We resolve the paradox by showing that an oblique
plane wave propagating atop a current of constant vorticity according to the linearised Euler equation
carries with it an undulating perturbation of the vorticity field, hence is not prohibited by the Constantin
theorem since vorticity is not constant. The perturbation of the vorticity field is readily interpreted in
a Lagrangian perspective as the wave motion gently shifting and twisting the vortex lines as the wave
passes. In the special case of upstream or downstream propagation, the wave advection of vortex lines
does not affect the Eulerian vorticity field, in accordance with the theorem.We conclude that the study of
oblique waves on shear currents requires a formalism allowing undulating perturbations of the vorticity
field, and the constant vorticity model is helpful only in certain 2D systems.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

The interaction of surface waves and currents has been a topic
of interest for a long time. In the presence of a depth-dependent
current, the nature of surface waves can change perceptibly, a
problem of great technological relevance in areas where currents
with near-surface vorticity are often present, such as the near-
shore region and river deltas, and in the presence of currents
generated by wind or tides [1]. For example, the vorticity of the
tidal current in the Columbia River mouth was reported at around
0.4 s−1 in the top 5 m of the water column, enough to significantly
affect the dispersion of gravity waves of wavelengths up to tens
of metres [2]. Waves interacting with currents could be one of
the key mechanisms for the generation of giant waves [3,4], and
have been considered lately both analytically and numerically for
vertically sheared currents where the current itself has constant
vorticity [5,6]. Wave–current interactions have also been studied
in the context ofwave resistance for insect biolocomotion [7,8]. For
two-dimensional systems of waves and shear currents, a sizeable
literature exists (see, e.g., [1,9,10] and references therein), but with
very few exceptions (e.g., [11–13]) wave propagation other than
directly with or against the current have not been studied. The
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shear current of constant vorticity with a free surface has recently
also attracted much interest in the mathematical community,
e.g. [14,16–18] and further references therein.

Recently Constantin [19] proved that when the vorticity is
constant for a shear current with a free surface, wave propagation
must be aligned either exactly upstream or exactly downstream,
i.e., the flow must be effectively two-dimensional. His work
furthers that of Constantin & Kartashova [15] and additional proofs
of similar results have followed [20,21]. While the mathematical
argument, briefly recounted below, is indisputable, the result
proved in these references appears to run counter not only to
physical intuition, but also appears to make the use of vectorial
Fourier analysis for linear surface waves in 3D illegal when a
shear flow is present, since oblique Fourier components would be
forbidden.

On the other hand, recent times have seen progress made on
the fully 3D problem of linear surface waves on top of a shear
current of constant vorticity, and explicit solutions to the linearised
Euler equations for 3D surface waves on such a background
flow have been found for initial value problems [22,23], ship
waves [24,25], andwaves froma submergedoscillating source [26].
In all cases the solutions rely on the ability to express wave
associated surface elevation and velocity components as a 2D
Fourier integral in the horizontal plane, whose kernel functions
can be understood as plane waves propagating in all horizontal
directions. In fact, with only directly upstream and downstream
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wave components, neither shipwave patterns nor ringwaves from
an initial disturbance or a point source are possible.

A paradox emerges, therefore, because one and the same
equation of motion, the Euler equation, on the one hand
necessitates Constantin’s theorem of two-dimensionality, and
on the other hand permits solutions which are patently three-
dimensional. In the following we resolve this paradox. We show
that the Euler equation permits periodic plane wave solutions
propagating at an angle with the underlying shear flow, but that
these waves are required to carry an associated vorticity field
except in the special case where wave propagation is aligned
with the shear flow. Constantin’s theorem rests on an assumption
that the vorticity is constant everywhere, hence there is no
contradiction between the theorem and the recent 3D solutions
to the Euler equations in the presence of a shear flow. These
skew waves are thus, in an Eulerian sense, rotational, although a
Lagrangian perspective shows how the rotationality is but a slight
redistribution of the vorticity of the underlying current. We show
for the oblique linear plane wave, how the vorticity perturbation
may be interpreted as the wave motion gently shifting, twisting,
stretching and contracting the vortex lines as it travels past.

The basic plane wave solutions for an oblique wave on a
linear-profile shear flow are presented, being the building bricks
from which above cited results for ship waves, ring waves and
the oscillating source were constructed. We propose that the
theorems, which prove the non-existence of irrotational oblique
waves on a shear flow with constant and horizontal vorticity,
should be understood physically in a positive sense: skew waves
on such a flow must always carry a corresponding vorticity
perturbation, i.e., they are themselves, in an Eulerian sense,
rotational. The assumption of constant vorticity, while a tempting
simplification, is not helpful for the study of three-dimensional
waves on shearing currents, and may be employed in some 2D
systems only.

2. Two-dimensionality of constant vorticity waves

We begin by briefly recounting the result proved by Con-
stantin [19]. Let us assume that a wave motion appears as a per-
turbation of a shear flow whose vorticity is constant in time and
space and horizontally oriented. The flow can have finite or infinite
depth, and is presumed to be inviscid and incompressible, hence
the velocity field U is governed by the Euler equation of motion (a
dot denotes partial derivative w.r.t. time),

U̇ + (U · ∇)U = −(1/ρ)∇P − gez (1)

and the continuity equation ∇ ·U = 0. Here the pressure field is P ,
g is the gravitational acceleration, and ez is the vertical unit vector.
Applying the curl operator yields the vorticity equation,

�̇ + (U · ∇)� = (� · ∇)U (2)

where the vorticity is related to U by � = ∇ × U.
The key assumption now made is that the velocity field has

constant vorticity � in time and space, not only the original shear
flow, but the perturbation due to the presence of waves as well. In
this case Eq. (2) reduces to

(� · ∇)U = 0, (3)

i.e., the velocity field can have no variation in the direction parallel
to �. But a wave train propagating in a general direction k in the
xy planemust, regardless of its shape, be associated with a velocity
field which varies along its direction of propagation, hence only
waves propagating either directly upstream or downstream with
respect to the shear flow can exist.

In particular, the above theorem implies that a plane wave of
constant vorticity, which has the form
ζ (r, t) ∝ exp[ik · r − iω(k)t]
(the real part is understood to be taken) with ζ the surface
elevation and r = (x, y), must have k pointing either exactly
upstream or downstream so that k · � = 0.

For linearised wave theory this seems to disagree with the use
of a Fourier description, by which any surface deformation can be
expressed in such a form,with the appropriate eigenvalue forω(k),
and where contributions from k in all directions are required to
describe, e.g., a localised initial surface perturbation.

Moreover such a conclusion is in discordwith physical intuition.
A local initial perturbation of a still water surface is a classical
problem considered by Cauchy and Poisson 200 years ago [27,28],
and results in ring waves propagating out in all directions, with
wave fronts becoming approximately plane far from the origin.
The equivalent systemwith a uniform (irrotational) current can be
found by an appropriate Galilei transformation, and the conclusion
remains the same. However, Constantin’s theorem seems to
indicate that if a constant vorticity is now introduced, however
small, it would drastically change the surface waves, since only up-
and downstream propagation is allowed.

While there is no doubt about the soundness of the theorem
itself, it seems clear that real-life wave systems cannot possibly
adhere to it. The paradox is resolved in the following.

3. Solution of the linearised Euler equation for a skew plane
wave

The theorems of Constantin [19], Wahlén [21] and others
assume the full velocity field including the wave motion to have
constant vorticity. In systems where the wave motion can be
seen as a perturbation of a constant vorticity shear flow (linear
and weakly non-linear system), the assumption implies that the
wave motion alone carry a constant vorticity, and since it is
the nature of wave motion to vary in time and horizontal space
(e.g., periodically) and to decreasewith depth, the assumption then
realistically means the wave motion alone be irrotational.

To elucidate the situation, let us compare with the solution
obtained for an oblique wave with no such restrictions imposed.
Consider the linearised Euler equation, for a shear flowwhich itself
has uniform vorticity and is of the form
Ucurr(z) = U0 + Sz (4)
where the undisturbed surface is at z = 0 and the shear flowpoints
along the x direction. The velocity field is

U = (Ucurr + û, v̂, ŵ) (5)
where û, v̂, ŵ are perturbations due to the wave field, and P =

−ρgz+p̂with perturbation p̂.We consider solutions to linear order
in perturbation quantities.

A plane wave is now presumed to travel upon the shear flow
(4) at an arbitrary angle θ with the x axis, i.e., the perturbation
quantities û, v̂, ŵ and p̂ are all presumed to have the form

[û, v̂, ŵ, p̂](r, z, t) = [u(z), v(z), w(z), p(z)]eik·r−iωt (6)

where r = (x, y) and the wave vector is k = (kx, ky) = k(cos θ,
sin θ). θ is the angle between wave propagation and shear current.
The eigenvalues ω(k) that permit a solution are provided by the
free-surface boundary conditions. The system is similar to that
considered in Ref. [13] and Section IV.B.3 of Ref. [1]. The Euler and
continuity equations become

−iωu + ikxU(z)u + Sw = − ikxp/ρ, (7a)
−iωv + ikxU(z)v = − ikyp/ρ, (7b)

−iωw + ikxU(z)w = − p′/ρ, (7c)

ikxu + ikyv + w′
=0 (7d)
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