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h i g h l i g h t s

• Creeping fluid flow in tubes of peri-
odically varying cross-section is in-
vestigated.

• Full BEM solution of Stokes’ equa-
tions is formulated for an infinite pe-
riodic tube.

• Recirculation flow occurs above a
critical amplitude dependent on
tube geometry.

• Two recirculation zones were found
for large amplitudes in all capillaries
studied.

• A numerical study characterises the
onset of first and second order recir-
culation.
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a b s t r a c t

In this paper we examine the onset of flow circulation in expansion regions of infinite tubes of periodic,
non-constant cross-section. Three types of axisymmetric capillary shapes were considered; sinusoidal,
parabolic and triangular. A full boundary element method (BEM) solution of Stokes’ equations was
formulated for the specific case of an infinite periodic tube. Geometric parameterswere varied to establish
conditions for the onset of recirculation. Recirculation flow is first predicted to appear beyond a critical
amplitude, for all types of tubes studied, with zones in tubes of triangular sections appearing at a
lower amplitude. Second order recirculation zones were predicted for still higher amplitudes, in all
the capillaries. A numerical study was undertaken to characterise the onset of first and second order
recirculation flows in terms of geometric factors.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Flow through an axisymmetric pipe of non-uniform cross-
section has been a topic of interest in fluid dynamics for some
time [1–7]. More recently, this interest has been renewed through
recognition of its potential to separate particle dispersions within
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microfluidic devices and nanoporous membranes [8,9]. Other
applications include the investigation of transport processes in
porous media [10] and biomechanics (e.g. blood flow through
arteries [11] or the transport of intestinal fluid through the
colon [12]).

In this paper, we investigate the effect of tube shape and
geometry on the flowcharacteristicswithin the tube. Under certain
conditions [13] (dependent on both the geometric properties of
the tube and the physical properties of the fluid), it is possible
to observe detachment of the flow from the pipe wall near the
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Fig. 1. (a) Schematic of an infinitely long, cylindrical periodically constricted capillary, h̄(z̄) = h̄(z̄ + nL), shown in dimensional variables. (b) Geometrical configuration of
a periodic tube, where z and r are the axial and radial directions, respectively showing the zeroth wave-section and the −k’th and +k’th wave-sections.

expansion regions (regions of maximum profile amplitude, see
Fig. 1(a)) of the tube. In this case, recirculation regions develop in
the sections of the tube where the diameter is greatest. It is the
effect of the tube shape and geometry on the development of these
recirculation zones which we have focused on in this paper.

Flow through tubes with sinusoidally varying cross-section has
been studied by a number of groups. Chow and Soda [1] and
Sisavath et al. [2] have found asymptotic series solutions for the
flow in tubes whose cross-section varies slowly along its length. A
number of numerical techniques, including spectral methods [3],
iterativemethods [4], and finite difference techniques [5] have also
been used to solve theNavier–Stokes equations for flow in periodic
tubes. The creeping flow problem has also been examined using
collocation methods [10,6] and the boundary element method [7].
Flow of non-Newtonian fluids through pipes of varying cross-
section has also been examined (see for example [11,14–16]). All
publications cited above have examined the case of a sinusoidally
varying axisymmetric tube with circular cross-section, and have
largely focused on plotting streamlines and velocity profiles for the
flow.

With the development of sophisticated manufacturing tech-
niques [17], the production of tubes with various geometric pro-
files has become feasible. Despite the fact that much of the
theoretical work has concentrated on sinusoidally varying tubes,
these are not the easiest to manufacture. Indeed, triangular,
parabolic, saw-tooth and square profiles aremore likely candidates
for application. Hence, it is of interest to investigate the relative
differences in flow behaviour due to geometric features other than
those inherent in simplewave-like profiles. To date, there has been
no such comparison of different types of profiles.

In this paper, we provide a systematic study of the effect of vari-
ous geometric parameters on the facilitation of the development of
recirculation zoneswithin a periodically varying tube. Three differ-
ent tube profile types are considered—cosine, piecewise parabolic
and triangular. We consider the creeping flow case and pay par-
ticular attention to the effect of varying the amplitude and wave-
length of corrugation, the length of the expansion regions and the
minimum (or throat) radius.

2. Governing equations

Consider the flow of an incompressible Newtonian fluid
through an infinite axisymmetric periodic tube at low Reynolds
number, see Fig. 1. An infinite periodic tube (rather than one repre-
sentativewave-section) is considered to enable the specification of
a pressure difference boundary condition (this is discussed inmore
detail in Section 3). The flow is driven by a pressure gradient1P/L,

where 1P is the pressure drop across one wavelength of the tube
and L is the wavelength of one section of the tube. The surface of
the tube is y = z̄ẑ + h̄(z̄)r̂ , where ẑ and r̂ are unit vectors in the
longitudinal and radial directions respectively and h̄(z̄) defines the
tube surface.

The equations governing the flow field in an axisymmetric tube
(Fig. 1(a)) in the absence of inertial effects (small Reynolds number,
Stokes flow) can be written in dimensional variables as

∇̄
2ū =

1
µ

∇̄p̄, ∇̄ · ū = 0

subject to no slip boundary conditions on the tube surface, S,

ū(x̄) = 0, x̄ ∈ S

and pressure difference 1P between the ends of one wavesection
of the tube. Here p̄(z̄, r̄) is the pressure, µ is the viscosity of the
fluid and ū(z̄, r̄) is the flow velocity.

On introducing the nondimensional variables, z = z̄/L, r =

r̄/L, p = p̄/1P, u = ūµ/(L1P), the Stokes equations for viscous
flow may be written

∇
2u = ∇p, ∇ · u = 0.

The fundamental solution of the nondimensional Stokes equa-
tions is [18]

u(x) =
1
4π


S
dS(y) G(x, y) · F(y)

−
1
4π


S
dS(y) H(x, y) · u(y) for x ∈ S, (1)

u(x) =
1
8π


S
dS(y) G(x, y) · F(y)

−
1
8π


S
dS(y) H(x, y) · u(y) for x ∈ V (2)

on the tube surface and interior respectively. Here, dS is the surface
area element of the boundary S at y and V is the interior region of
the tube. In addition, F(y) = −6(y) · n̂(y) is the force per unit area
exerted on the fluid by the boundary at y (boundary force), where
6(y) is the stress tensor, defined as

Σij = −p δij +


∂ui

∂xj
+

∂uj

∂xi


and the normal vector n̂(y) = (n̂z, n̂r) is directed outward from
the control volume V . Also, G(x, y) and H(x, y) are known func-
tions of the sample point x and source point y, defined as
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