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a b s t r a c t

An approach is presented to determine the viscous velocity, diffusion and thermal slip coefficients for
three-component gaseous mixtures. The gas is described by the McCormack linearized kinetic model. It
is shown that two diffusion slip coefficients exist for a ternary mixture. The boundary problem is solved
by the discrete velocity method. The slip coefficients are calculated and tabulated for He–Ar–Xe mixture
at various values of the mole fractions for the hard-sphere and experimental potentials. It has been found
that the diffusion and thermal slip coefficients are more sensitive to the interaction potential than the
viscous one. Representative velocity profiles of the Knudsen layer are also shown. Furthermore, a test
calculation is presented for pressure and mole fraction driven flows in a tube. The flow rates obtained
by the slip solution are compared to the kinetic results. It is revealed that the slip flow approximation
provides a relatively good estimation of the flow rates at higher rarefaction parameters. The present
methodology and the tabulated data can be useful to determine the gaseous flow in the slip region for
the ternary mixture.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Over the last years, significant effort has been made to study
rarefied gas flows. This renewing interest has mainly been stimu-
lated by the appearance of gaseous flows at the micro- and nano-
scale [1] and new applications in vacuum science [2]. Gaseous
flows can be characterized by the Knudsen number, the ratio of
the molecular mean free path and the characteristic length scale
of the flow. In the whole range of the rarefaction, the description
should be based on the kinetic level [3]; however, if the flow is
in the near continuum region, fluid dynamic equations can still be
used with appropriate slip (or jump) boundary conditions for the
macroscopic quantities.

The slip boundary condition is based on the viscous velocity,
diffusion and thermal slip coefficients. The diffusion coefficient ap-
pears only for gaseous mixtures, of which species tend to acquire
different speeds due to the finite rarefaction. At the kinetic level,
the flow can be represented by the original Boltzmann or model
kinetic equations. The viscous and thermal slip coefficients have
been deduced for single gases by using direct numerical simula-
tions [4–7] or variational approaches [8–10]. The viscous veloc-
ity, diffusion and thermal slip coefficients have been calculated for
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binary mixtures [11–15]. The slip coefficients have been de-
termined by experimental measurements for both single gases
[16,17] and binary gas mixtures [18,19]. For a comprehensive
overview on the subject and additional references, the reader may
consult with the following review articles [20,21].

Recently, the McCormack kinetic model has been solved for
pressure and mole-fraction driven three-component (ternary) gas
mixture in long tubes [22]. It is interesting to determine the slip
coefficients for flows of ternary mixtures. As it will be shown here,
for multi-component gases, the diffusion phenomenon is more
complex than for two-component mixtures.

The scope of this paper is to determine the viscous velocity, dif-
fusion and thermal slip coefficients for ternary gas mixtures and to
present a methodology for that purpose. The calculation is based
on the McCormack linearized kinetic model. The boundary prob-
lem is solved by the discrete velocity method. As an example, the
coefficients are calculated for He–Ar–Xe mixture at various val-
ues of the mole fraction and by using the hard-sphere or experi-
mental potentials. Representative velocity profiles in the boundary
layer are also shown. Finally, the coefficients are applied to pres-
sure and mole fraction driven flows through a tube. The flow rates
are deduced by using the slip flow assumption and compared to
the corresponding kinetic results at higher values of the rarefaction
parameter.
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2. Definition of the problems

The ternary gas mixture has three components, α = 1, 2 and 3.
The molecular masses and the densities of the species are denoted
by mα and nα . The total density is n =


α nα . The partial mole

fractions of the components are defined by Cα = nα/n. The mean
free path of the mixture is introduced such that

l0 =
µv0

P
, (1)

where µ is the viscosity, v0 =
√
2kBT0/m is the characteristic

molecular speed and P is the static pressure. Here, kB, T0 denote
the Boltzmann constant and the reference temperature, and m =

α Cαmα is the average mass.
The flow configuration is described in Cartesian coordinate

system (x′, y′, z ′). The gas is bounded by a solid plate located at
x′

= 0, having its normal vector pointing toward direction x′.
A steady gas flow is assumed along direction z ′. The velocity has
only z-component u′

= (0, 0, u′
z). The boundary condition at the

plate is diffuse reflection. In the following, the specific problems
for the viscous, diffusion and thermal slip coefficients are discussed
separately.

2.1. Viscous slip flow

For the viscous slip problem, there is a shear flow of the gas
along the plate. The velocity far from the surface is given by

lim
x′→∞

u′

z(x
′) = v0


σP +

x′

l0


ϵ, (2)

where σP is the viscous slip coefficient and ϵ is the dimensionless
gradient of the velocity. It is assumed that ϵ is small (i.e. ϵ ≪ 1);
hence, the gas is slightly perturbed around equilibrium.

Due to the smallness of ϵ, the problem can be linearized. The
velocity is decomposed as

u′
= (u′K

+ u′R)ϵ, (3)

where u′K contains the kinetic boundary layer and u′R
= (0, 0, u′R

z )

is a reference velocity profile with u′R
z (x′) = x′/l0. The viscous slip

coefficient can be obtained such that

σP = lim
x′→∞

u′K
z (x′)

v0
. (4)

The gas mixture is described at the kinetic level by the velocity
distribution function of the molecules fα(v ′, x′, y′, z ′) with v ′

denoting the molecular velocity. This function is linearized as

fα = f (0)
α (v ′, x′)[1 + ϵhα(v ′, x′, y′, z ′)], (5)

where hα is the perturbation function and

f (0)
α (v ′, x′) = π−3/2n0αv−3

0α exp

(v ′

− u′Rϵ)2/v2
0α


(6)

is the Maxwell equilibrium function. Here, v0α = v0
√
mα/m and

n0α is an assumed equilibrium for the densities.

2.2. Diffusion slip flow

In the case of the diffusion flow, the flow is generated by non-
zero gradients of the densities of the species along the plate with
the constraint that the static pressure is constant. This means that
the flow is induced by the gradients of the mole-fractions along
the tangential direction, but there is no pressure gradient. The
diffusion flow can appear in engineering applications when the
mole-fraction is non-uniform. It is a rarefaction phenomenon, like
the viscous velocity slip, and does not appear in the hydrodynamic

limit. Themole-fraction gradients cause a constant bulk velocity of
the mixture as a whole far from the surface.

The dimensionless gradients of the densities are defined by

Xα =
∂nα

∂z ′

l0
n0α

. (7)

The constraint of the constant pressure can be written as

3
α=1

CαXα = 0. (8)

It is assumed that the density gradients are small (Xα ≪ 1). Hence,
the flow is slightly perturbed around equilibrium, and a linearized
description can be applied. In the case of a binary mixture, Eq. (8)
indicates that one of the driving terms can be chosen freely,
while the another one is determined by the constraint. Hence, for
binary mixtures, there is only one mole-fraction gradient which
can be defined freely for the diffusion problem (see e.g. Ref. [13]).
However, for ternary gas mixtures, it follows from Eq. (8) that two
of the three Xα can be chosen freely. This means that due to the
linearization, the overall problem can be decomposed of two sub-
problems. In this work, two different flows with

X1 = C2η, X2 = −C1η, X3 = 0 (9)

or

X1 = C3η, X2 = 0, X3 = −C1η (10)

are considered. Here, η is a small parameter (η ≪ 1), which plays
the same role as ϵ in the case of the viscous problem. It follows from
the above discussion that two diffusion slip coefficients exist for a
ternary gas mixtures. In fact, Eq. (8) indicates that N − 1 diffusion
slip coefficients exist if the gas has N number of components.

For flows defined by Eq. (9) or (10), the velocity of the mixture
far from the surface is constant

lim
x′→∞

u′
z(x

′)

v0
= σ

(k)
C η, (11)

where σ
(j)
C is defined as the diffusion slip coefficient having two

components. Here, superscript j = 1, 2 is introduced in order to
denote the two different flows defined by either Eq. (9) or (10),
respectively.

The meaning of the two diffusion slip coefficients is that they
provide the bulk velocity of the mixture far from the surface for
the above defined two sub-problems, Eqs. (9)–(10). Due to the lin-
earization, for arbitrary small density gradients obeying the con-
straint of Eq. (8), the bulk velocity can be determined by using the
density gradients and the two diffusion slip coefficients by super-
position.

Let us consider an example. Suppose that the mole-fractions of
the components vary along the plate, but the pressure is constant;
hence, Eq. (8) holds. By using the definition of the sub-problems,
Eqs. (9)–(10), and the diffusion slip coefficients, Eq. (11), the bulk
velocity far from the surface can be obtained by

lim
x′→∞

u′
z(x

′)

v0
= −σ

(1)
C

X2

C1
− σ

(2)
C

X3

C1
. (12)

Therefore, if the mole-fractions Cα and the density gradients Xα of
the components are given, the bulk velocity far from the surface
can be calculated by using Eq. (12) for the diffusion flow problem.
Here, it is useful to emphasize that the dimensionless density
gradients are proportional to the mean free path, Eq. (7). Hence,
if the mean free path is doubled for example, the velocity slip
is also doubled. This indicates that the diffusion slip velocity is
proportional to the Knudsen number, which is defined as Kn ∝

l0/LC , where LC denotes the characteristic macroscopic size of the
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