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• The nonlinear interaction of gravity and acoustic modes is studied.
• A solution to the Longuet-Higgins resonance case and its evolution is obtained.
• The results enrich our understanding of microseisms generation.
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a b s t r a c t

The effect of the compressibility of the ocean and its role in generating progressive compression-type
waves (acoustic-gravity waves) are revisited. Originally, Longuet-Higgins (1950) obtained a solution for
the nonlinear interaction of two opposite waves in a compressible fluid, which results in the generation
of compression waves. In this paper we extend this solution to include the general interaction of waves
of profoundly different wavelengths. We also fully solve the special triad resonance case obtained by
Longuet-Higgins (1950).

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

The small compressibility of water is negligible in the over-
whelming majority of ocean surface-waves studies. In an incom-
pressible ocean, with constant depth h, the solution of the field
equation (i.e. the Laplace equation), results in a single progressive
surface wave, for each prescribed frequency ω and corresponding
wave number k. However, accounting for the small compressibil-
ity of the water gives rise to several progressive waves with wave
numbers kn, n = 0, 1, . . . ,N . The wave number k0 corresponds to
the progressive wave to be addressed as gravity wave, and it is al-
most identical to k; the wave numbers k1 . . . kN are much smaller
than k0, correspond to compression-type waves also known as
acoustic-gravitywaves, whereN is the nearest integer smaller than
(ωh/πc+1/2), and c is the speed of sound in water, assumed con-
stant. For the sake of brevity, and apart from the gravity wave, we
consider the first acoustic-gravity mode only. Compared to other
acoustic-gravity modes, the first mode has normally the largest
amplitude [1], containing most energy [2]. Moreover, it is the only
mode that outlasts below a critical depth, turning into a Scholte
wave and then into a Rayleigh wave at the shoreline [2].
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The aim of the current work is to provide a solution for the non-
linear interaction of waves of different periods and their effect on
both gravity and acoustic-gravity modes, in a compressible fluid
of finite depth. In addition, a solution to the Longuet-Higgins res-
onance case (see [3],1 Section 4, Equation (176)) and its evolution
is provided. The obtained results enrich our understanding on the
generation and evolution of compression waves—the origin of mi-
croseisms.

The first theoretical works on the generation of acoustic-gravity
modes by fluid flows were described by LH and Lighthill [4], and
later extended byHasselmann [5] andHasselmann [6]who studied
the problem from a statistical point of view. It has been commonly
accepted that the mechanism for the generation of low frequency
acoustic-gravity waves in the ocean is the nonlinear interaction of
two gravity waves that travel in nearly opposite directions [7,8].
The generation of acoustic-gravity waves by nonlinear interaction
of gravity waves has been studied extensively by Kibblewhite
[9–12] and Webb [13–16]. More recently, this subject has also
been studied by Ardhuin andHerbers [17], Kadri and Stiassnie [18],
Ardhuin et al. [19] and Duennebier et al. [20].

1 To be addressed as LH.
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In this paper we extend the work reported in Section 4 of LH
to include interaction of waves with wavelengths not necessarily
equal. For the sake of brevity, and in order to allow for a straightfor-
ward comparison with LH, we use identical notation and analysis
where applicable. The obtained solution is valid for waves of pro-
foundly different wavelengths. The basics and formulation of the
problem are given in Section 2. The first and second order solu-
tions are presented in Sections 3 and 4, respectively. The solution
of the LH resonance case is given in Section 5. Finally, the conclud-
ing remarks are given in Section 6.

2. General equations

Consider the two dimensional problem of surface waves inter-
acting on an ideal compressible fluid of a constant depth. The flow
is assumed irrotational. A Cartesian system (x, z) with the origin
in the undisturbed free surface and the z-axis vertically upwards is
considered. The governing equation is the two dimensional com-
pressible wave equation (e.g., [21]; LH)
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where φ(x, z, t) is the flow velocity potential, and the velocity of
the fluid is defined by the gradient of its potential (u = gradφ); and
z = −h is the equation of the rigid bottom. The bottom boundary
condition is
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and the kinematic boundary condition reduces to
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where (. . .) denotes higher order terms.
Following LH, using the method of successive approximations

we define

φ = ϵφ1 + ϵ2φ2 + · · · , u = ϵu1 + ϵ2u2 + · · · ,

η = ϵη1 + ϵ2η2 + · · · , etc.,
(5)

where ϵ is a small ordering parameter. Substituting definitions (5)
into Eqs. (1), (2), and (4), and taking terms of order ϵ yields
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Similarly, for the second order approximation we have
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3. Solution of the first order (linear) approximation

Assume that φ1 is a simple progressive wave given in a complex
exponential form

φ1 = F(z)e−i(kx−ωt), (16)

where k and ω are real, and F(z) is complex and a function of the
vertical axis z only. Writing

F(z) = f (z)eγ z, γ =
g
2c2

, (17)

and substituting in Eq. (16) and then in (6) yields

d2f (z)
dz2

− κ2f (z) = 0, (18)

where κ2
= k2 − ω2/c2 + γ 2. Assuming κ ≠ 0 we have

f (z) = Aeκz + Be−κz, (19)

where A and B are constants, and thus

φ1 = Ae(γ+κ)z
+ Be(γ−κ)z . (20)

From conditions (7) and (8) we obtain the following two equations

(γ + κ)e−(γ+κ)hA + (γ − κ)e−(γ−κ)hB = 0,
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The determinant of this homogeneous system is

∆(ω, k) = (γ + κ)

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Note that∆(ω, k) = 0, which is required for a non-trivial solution
of (22), yields the dispersion relation2

ω2
= g

κ2
− γ 2

κ coth κh − γ
. (23)

An approximate explicit dispersion relation that was added in
proof is given in Appendix A.

The solution of the first order approximation is finally given by

φ1 = −
H
2

g
ω

κ cosh [κ (h + z)] − γ sinh [κ (h + z)]
κ cosh(κh)− γ sinh(κh)

× eγ z sin(kx − ωt), (24)

2 Neglecting gravity effects the relation (23) reduces to ω2
= gκ tanh κh, and in

the incompressible limit, κ = k, it reduces to the well-known dispersion relation
ω2

= gk tanh kh, where k = k0 is the gravity mode.
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