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h i g h l i g h t s

• Periodic finite amplitude waves between two fluid layers are shown to exist.
• The weakly nonlinear models are inaccurate when considering the periodic case.
• Finite amplitude periodic internal waves have a slower decay rate.
• Finite amplitude periodic internal waves have a higher threshold velocity.
• Finite amplitude periodic internal waves can be approximated as a sum of soliton shapes.
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a b s t r a c t

Using the two-layer fluid model for long interfacial waves of finite amplitude, we find solutions for peri-
odic traveling waves and investigate their properties. In addition, it is shown that these periodic traveling
waves can be represented as an infinite sum of spatially repeated soliton shapes, although it is concluded
that this is merely a very accurate approximation and not a mathematical property of the model (as is
often characteristic for cases of weak nonlinearity). By reducing the aforementioned model to its small
amplitude counterpart (i.e. the Benjamin–Ono equation), an explanation is provided as to the fact that
even for small wave amplitudes, there remains an apparent discrepancy between the models which in-
creases as the period length shortens.

© 2014 Published by Elsevier Masson SAS.

1. Introduction

Traveling nonlinear (solitary and periodic) waves are waves
which propagate on the interface bounding two immiscible fluids
without changing their shape. This phenomenon is possible due to
a delicate balance between dispersion and nonlinear effects, such
that for a specific wave shape, all of its components will advance
at the same rate. One important class in this category is that of
traveling gravity waves, for which several models exist. There is
a vast literature on theoretical, numerical and experimental in-
vestigations of interfacial and internal solitary waves and here we
list only few [1–19]; however, it is important to note that most of
these studies primarily deal with solitary solutions and do not dis-
cuss the possibility of periodic waves. This particular point is fur-
ther elaborated on in this paper. As far as periodic nonlinear waves
are concerned, it is worth noting that the subject of generalized
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solitary solutions for internal waves (including the case of con-
tinuous stratification) has also been elaborated, even in the large
amplitude regime (see for example [20–23]). Typical generalized
solitary waves are characterized by a single pulse plus a periodic
ripple wave structure connecting to infinity. In this work however
we choose to concentrate on the periodicity of long (baroclinic)
interfacial finite-amplitude wave solutions in a planar two-layer
fluid system.

Weakly nonlinear models for long waves (i.e., models assuming
small wave amplitude and large typical wave length in comparison
with the fluid layer depth) are amongst the most investigated due
to the fact that they are integrable and may provide analytical in-
sight into many physical phenomena, such as surface and internal
waves in the ocean and atmosphere. The three main ‘weak’ mod-
els often used are the Korteweg–de Vries (KdV) model – which is
applicable to surface waves traveling over a single shallow layer
– and the Benjamin–Ono (BO) and Intermediate Long Wave (ILW)
models which deal with internal waves traveling at the interface
between two layers: one shallow and the other deep (see for exam-
ple [6]). All three models are known to support both solitary and
periodic traveling waves, with the former comprising a limiting
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case of the latter. However, the assumption of weak nonlinearity
has been shown to be problematic when describing naturally aris-
ing phenomena, particularly in the case of the two- layer model,
which has failed to accurately describe experimental results out-
side a narrow parameter space [12].

This shortcoming makes it desirable to use models which omit
the assumption of weak nonlinearity, giving rise to new and more
precise descriptions of long traveling gravity waves [8]. This preci-
sion is of particular importance in the case of internal waveswhere
the validity of the weakly nonlinear models is limited to a small
amplitude range. Indeed, part of the motivation for searching for
interfacial periodic solutions of finite amplitude is the fact that
internal periodic weakly nonlinear waves practically do not ex-
ist for any arbitrary propagation speed but instead have a distinct
threshold velocity, under which no solutions are to be found. For
relatively short wave lengths, this threshold velocity can be well
beyond the limits of validity for the weakly nonlinear models, thus
making it crucial to use finite amplitude models in order to cor-
rectly describe the periodic waves. This observation has not been
reported nor discussed before in the context of nonlinear interfa-
cial or internal waves.

The objectives of the current work are thus to investigate the
general behavioral properties of periodic interfacial waves of fi-
nite amplitude – as was previously done for the case of internal
solitary waves – and by doing so explain the differences that arise
when compared against their weakly nonlinear counterparts. A
unique and rather unexpected feature of weakly nonlinear inte-
grable models is that given the solitary wave solution, a periodic
wave solution can be constructed using an infinite row of equally
spaced solitary wave shapes. Nevertheless, the speed of the pe-
riodic wave train is different from the corresponding velocity of
each soliton because of nonlinear interaction. This featurewas first
proven by Toda [24] to hold for nonlinear lattices and later on
by [25,26] for the KdV and modified KdV models. Further exten-
sions for both BO and ILWmodels are also known [5,6,27]. A similar
superposition principle has been also established forwave solution
of the Camassa–Holm equationwhich are characterized by discon-
tinued first derivatives [28,29]. It is interesting to note that such a
superposition dictum can be shown to exist also for partially in-
tegrable [30] or even nonintegrable nonlinear evolution equations
which arise in other branches of mathematics and physics [31,32].
The common feature to all these ‘weak’ models is that a solitary
wave solution can be analytically found and thus a particular su-
perposition construct can be rigorously proven. Yet, an open ques-
tion which still remains and also dealt in the sequel is determining
whether such a compelling feature is also true for finite (non-weak)
amplitude interfacial waves as in the present case.

The structure of this note is as follows: in Section 2 we present
a short derivation of the corresponding finite amplitudemodel fol-
lowing the lines of [8], including a comparison to the BO and ILW
‘weak’ models. In particular, we address the issue of the existence
of a threshold velocity for the finite-amplitude periodic wave solu-
tions under limiting cases. A straightforward numerical scheme for
computing periodic waves is further developed and presented in
Section 3. Some numerical simulations of periodic wave solutions
for various flow and geometric parameters are finally discussed in
Section 4, including a detailed analysis of the dependence of the
critical (threshold) minimal velocity in terms of the physical pa-
rameters. We conclude with a short summary in Section 5 and a
discussion of the validity of the repeated soliton ‘summation’ prop-
erty for the present ‘non-weak’ case.

2. The two-layer finite-amplitude model and preliminary
analysis

Beginning with Euler’s equations and following Choi and
Camassa [8], one can show that the model equations for two-
dimensional long internal waves of finite amplitude at the

interface between two immiscible fluid layers bounded with rigid
lids are given by

ηt + (ηū)x = 0

ūt + ūūx − g∗ηx = ρrH

(ηū)xt

 (2.1)

where η = h − h1 is a measure of the wave height h with re-
spect to the shallow upper prescribed layer depth h1, ū is the av-
eraged horizontal velocity over the depth of the shallow layer and
g∗

= g (ρr − 1) is a modified acceleration of gravity dependent
upon the density ratio of the two layers ρr ,

ρ2
ρ1

≥ 1 where ρ1 and
ρ2 denote the upper and lower layer densities respectively. Here x
denotes the horizontal coordinate and t is the time. The operator
H [f ], which appears on the right-hand side of the second equation
in (2.1), is an integral operator of the following form:

H [f (x)] =
1
2d

p.v.


∞

−∞

coth


π (x − y)
2d


f (y) dy, (2.2)

where d denotes the depth of the deep lower layer, and the
acronym p.v. implies that the integral should be interpreted ac-
cording to Cauchy’s principal value. In the case of an infinitely deep
lower layer, (2.2) reduces to the well-known Hilbert transform

H [f (x)] =
1
π
p.v.


∞

−∞

f (y)
x − y

dy. (2.3)

Eq. (2.1) constitutes a bi-directional model for long interfacial
waves and can be considered as a particular case of the nonlin-
ear Su–Gardner (SG) [2] or the one dimensional version of the
Green–Naghdi (GN) [3] correspondingmodels. No restrictions have
been imposed so far upon the wave amplitude, so that the above
formulation remains valid also for waves of finite amplitude. As-
suming no a priori knowledge regarding the model equations for
weakly nonlinearwaves, we adopt a formal perturbation series ap-
proach and define

η = η0 + δη1 + δ2η2 + · · ·

ū = u0 + δu1 + δ2u2 + · · ·
(2.4)

where u0 = const; η0 = const; δ =
ηmax−η0

η0
≪ 1. Additionally, we

define new set of stretched coordinates as;

x̃ = δ (x − c0t)

t̃ = δ2t
(2.5)

where c0 is the infinitesimal velocity of translation.
Substituting (2.4) into (2.1), while using (2.5) and collecting

terms in different powers of δ, leads to the following weakly non-
linear model equation:

ηt + c0ηx +


3
2


g∗

h1


ηηx +

c20ρr

2


h1

g∗
H (ηxx) = 0 (2.6)

where c0 = u0 +
√
g∗h1. Eq. (2.6) is precisely the ILW equation,

which in the case of an infinitely deep lower layer reduces to the
BO equation [6].

Let us now narrow our discussion solely to the particular case
of traveling waves, which in turn implies

η = η (x − ct)
ū = ū (x − ct)

(2.7)

where in general c ≥ c0.
After substituting (2.7) into (2.1) and (2.6), integrating once and

introducing the boundary conditions at infinity, namely: |x| →

∞, η → −h1 (h → 0), u → u0, we respectively obtain the



Download English Version:

https://daneshyari.com/en/article/7051352

Download Persian Version:

https://daneshyari.com/article/7051352

Daneshyari.com

https://daneshyari.com/en/article/7051352
https://daneshyari.com/article/7051352
https://daneshyari.com

