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a b s t r a c t

The Peregrine breather, todaywidely regarded as a prototype for spatio-temporally localized roguewaves
on the ocean caused by nonlinear focusing, is analyzed by direct numerical simulations based on two-
phase Navier–Stokes equations. A finite-volume approach with a volume of fluid method is applied to
study the Peregrine breather dynamics up to the initial stages ofwave breaking. The comparison of the nu-
merical results with laboratory experiments to validate the numerical approach shows very good agree-
ment and suggests that the chosenmethod is an effective tool to studymodulation instability and breather
dynamics in water waves with high accuracy even up to the onset of wave breaking. The numerical re-
sults also indicate some previously unnoticed characteristics of the flow fields below the water surface
of breathers, which might be of significance for short-term prediction of rogue waves. Recurrent wave
breaking is also observed.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

The formation of rogue waves in the oceans is at present in-
tensely debated to be related to modulation instability (MI) [1].
This instability was originally discovered in the context of Stokes
waves and is thus also often referred to as Benjamin–Feir instabil-
ity [2–5]. Today, it can be discussed most generically within the
context of the nonlinear Schrödinger equation (NLS) [6,5], which
is the lowest order model for weakly nonlinear dispersive wave
envelope dynamics. The NLS is integrable [7] and has successfully
proven to provide suitable initial and boundary conditions to allow
observation of soliton dynamics in dispersive and nonlinear me-
dia. A special class of exact solutions of the NLS are the so-called
breathers on finite background [8], which describe strong nonlin-
ear focusing of waves, and therefore roguewave dynamics. Among
the different kinds of breather solutions, there is the Peregrine
breather [9], which is localized in both time and space. Basically, it
describes the nonlinear stage of the MI of Stokes waves for infinite
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modulationwavelength. Today the Peregrine breather is thus often
considered to be themost likely prototype for roguewaves [10,11].
The Peregrine breather itself and related NLS solutions are cur-
rently intensely analyzed and studied in several nonlinear disper-
sive media [12–15]. The recent observations in optics [16,17], in
water waves [18–22] and in plasma [23] have demonstrated im-
pressively the ability of the NLS to model nonlinear focusing and
spatio-temporal localization of wave groups.

For water waves, a number of studies on breather type dynam-
ics and nonlinear focusing have become available in recent years,
and all of them show remarkable correspondence between NLS
theory and experimental data forwave stateswith small steepness,
i.e. truly weak nonlinearity. The behavior of steeper, or more non-
linear waves, and the behavior of breaking, is far less understood,
however. Interestingly, most available studies focus on the surface
elevation dynamics only, and it seems that hardly any attention
has been paid to the sub-surface flow fields of breather type water
waves. In this study, we thus report direct numerical simulations
(DNS) of Peregrine breather dynamics on the basis of two-phase
incompressible Navier–Stokes equations. A finite volume method
(FVM) is applied for discretization and a volume of fluid technique
(VOF) for capturing the interface dynamics between water and air.
A special focus is put on the dynamic evolution up to initiation of
wave breaking, and on the sub-surface flow fields. The study may
have a significant impact in applications in offshore engineering.
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Fig. 1. The configuration of the solution domain. A grid deformation, generating the
waves, initiates at x = 0 and a damping zone extends over 2.5 m on the opposite
end.

2. Theoretical preliminaries and numerical setup

The temporal and spatial dynamics of deep-waterwave packets
can be described by the following form of the NLS [5,24],
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with the free surface elevation given by

η (x, t) = Re (A (x, t) exp [i (k0x − ω0t)]) . (2)

Here, k0 and ω0 denote the wave number and wave frequency,
respectively. For deep-water conditions, the wave-packet A (x, t)
propagates with the group velocity cg =

ω0
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with an amplitude of a0. The first family of

breather solutions that was found are referred to as Akhmediev
breathers [25,26]. The solutions are periodic in space and localized
in time. The Peregrine breather [9] arises in the limit of infinite
period of the Akhmediev breathers. This particular solution is
localized in both space and time. It amplifies the amplitude of
the background by a factor of three and is therefore considered
to be an appropriate model to describe rogue wave dynamics in
water waves as well as other nonlinear dispersive media, such as
in nonlinear fiber optics [16] and in plasma [23]. The Peregrine
solution of the NLS can be expressed as follows:
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It is the lowest-order solution of an infinite hierarchy of doubly-
localized solutions, derived by nonlinear superposition of several
Peregrine solutions [27]. The Peregrine breather dynamics has
been recently confirmed in water wave experiments [18,19]. Sub-
sequently, initial conditions for the numerical simulations as well
as for the laboratory experiments are determined by evaluating
Eq. (2) for a selected position x∗, see [28].

For our simulations we use a second-order finite volume dis-
cretization of the Navier–Stokes equations as implemented in the
commercial STAR-CCM+ software [29]. The air and the water are
assumed to have constant viscosity and density, with the density
of air being ρair = 1.2 kg m3, the density of water being ρwater =

1000 kgm3, the dynamic viscosity of air beingµair = 1.8·10−5 Pa s
and the dynamic viscosity of water being µwater = 0.001 Pa s. For
capturing the interface between air and water, a VOF method is
used in this study [30].

The solution domain is based on the wave tank used in [19], see
Fig. 1 for a schematic sketch.

The tank is initially filled up to a height of 1mwithwater, while
the rest of the tank volume is air at an initial reference pressure of
pref = 1013.25 hPa.

The origin of the reference coordinate system is located at the
bottom left corner of the computational domain. The length in
x-direction is lx = 12.0 m and in z-direction is lz = 1.5 m. The
left wall can rotate around the y-axis, characterized by the angle
γ relative to the x-axis. Thus, the wall moves like a flap type wave
maker and can be used to generate waves just as in the experi-
ments [18]. The tank sides as well as the tank bottom are modeled
as no-slip walls. Towards the end of the experimental tank there is
an absorbing beach. Analogously a numerical wave damping zone
was introduced into the numerical model, extending over a length
of 2.5 m next to the tank boundary opposite to the moving flap.
The damping is implemented by applying a resistance to vertical
motions [31]. For the vertical velocity component w the damping
is achieved by adding a source term to the equations of motion,
which has the following form:

qdz = ρ(f1 + f2|w|)
exp (κ) − 1
exp (1) − 1

w, κ =


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nj
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Here, x denotes the wave propagation direction with xstart being
the start- and xend the end-coordinate of the damping zone, respec-
tively. For the present study, the model damping parameter values
have been set to f1 = 10.0, f2 = 10.0 and nj = 2.0. From the
subsequent results it will be seen that this implementation func-
tions very well. Nevertheless, both in experiments and in numeri-
cal analysis we havemade sure that there are no spurious effects of
reflections coming into play for the results that we discuss below.

The simulations describe the propagation dynamics of the
breather in one spatial dimension. The solution domain was dis-
cretized with a rectilinear grid. The grid has 200 cells per carrier
wavelength λ0 and 16 cells per carrier wave amplitude a0. It is
gradually coarsened with increasing distance from the water sur-
face, and the overall number of cells could be substantially re-
duced in comparison to a grid with constant cell volume, while
yielding a comparable discretization error. A number of calcula-
tions have been performed to ensure satisfactory convergence of
the discretization, and finally a mesh with 685, 325 cells has been
selected for the results presented.

To generate waves, experimentally [18] it has turned out ef-
fective to harmonically move the flap with an amplitude propor-
tional to the desired temporal surface elevation η(x∗, t) of the
water,which in turn is given from theNLS solutionA (x, t). To avoid
causing disturbances by starting the flap movement with full am-
plitude, a linear fade-in for the first 4 s is applied. To realize the flap
motion in the computational domain, we usedmoving control vol-
umes, i.e. moving computational grid cells: the grid was deformed
such that the movement of the left domain boundary corresponds
to the flap movement. For that purpose, the STAR-CCM+ morpher
tool was used. The morpher stretches or shrinks all grid cells in
x-direction proportional to the distance between the flap wall and
the fixed opposite wall, see Fig. 2.

The advantage of this approach is, that the number of grid cells
remains constant.Moreover, the grid retains its quality throughout
the morphing process since the flap movement, and thus also the
resulting grid deformation, is rather small.

The calculations were carried out as a direct numerical simula-
tion (DNS), i.e. nomodelingwas applied to theNavier–Stokes equa-
tions. Apart from the slight breaking of the rogue wave, the flow is
mostly laminar. Thus, the temporal and spatial fluctuations can be
resolved with an acceptable computational effort.

The STAR-CCM+ Implicit Unsteady solver was applied to carry
out the transient computations. To ensure numerical stability in
time-marching, a good guideline is that a fluid particle should not
crossmore thanhalf a computational cell per time step, i.e.with the
Courant number C , the stability condition is C = ui∆t/∆xi < 0.5,
where ui is the velocity component in xi-direction, ∆xi labels the
minimum cell size in xi-direction and ∆t denotes the time step
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