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a b s t r a c t

We consider both the axisymmetric and planar steady-state Poiseuille flows of weakly compressible
Newtonian fluids, under the assumption that both the density and the shear viscosity vary linearly with
pressure. The primary flow variables, i.e. the two non-zero velocity components and the pressure, as well
as the mass density and viscosity of the fluid are represented as double asymptotic expansions in which
the isothermal compressibility and the viscosity–pressure-dependence coefficient are taken as small
parameters. A standard perturbation analysis is performed and asymptotic, analytical solutions for all the
variables are obtained up to second order. These results extend the solutions of the weakly compressible
flow with constant viscosity and those of the incompressible flow with pressure-dependent viscosity.
The combined effects of compressibility and the pressure dependence of the viscosity are analyzed and
discussed.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

In most isothermal flows of Newtonian liquids, the density and
the viscosity are commonly assumed to be constant. Such an as-
sumption, however, is valid only at low processing pressures and
may introduce significant error when modeling flows involving
high pressures or a large pressure range, such as polymer process-
ing, crude oil and fuel oil pumping, fluid film lubrication, microflu-
idics, and in certain geophysical flows [1–4].

Waxy crude oil transport [5], polymer extrusion [6,7], and poly-
mer injection molding [8] are important cases of liquid flows in
long tubes where compressibility effects cannot be neglected. An
exponential equation of state, relating themass density of the fluid,
ρ∗, to the total pressure, p∗, is very often used for compressible
liquids [5,9]. For weakly compressible liquids, the following linear
equation of state is a good approximation to the exponential equa-
tion of state:
ρ∗

= ρ∗

0


1 + ε∗(p∗

− p∗

0)


(1)
where ε∗ is the isothermal compressibility, assumed to be con-
stant, and ρ∗

0 is the mass density of the fluid at the reference
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pressure p∗

0 . It should be noted that a superscript star throughout
the text indicates a dimensional quantity.

Various numerical solutions for weakly compressible Poiseuille
flows for Newtonian [10] as well as non-Newtonian fluids, such
as the Carreau fluid [6], the Bingham plastic [5], and certain vis-
coelastic fluids [11] are available in the literature. Venerus and co-
worker [12,13] derived analytical perturbation solutions in terms
of the compressibility for the axisymmetric and the plane isother-
mal Poiseuille flow of a weakly, compressible Newtonian liquid
respectively, using the steamfunction/vorticity formulation and
employing Eq. (1). Taliadorou et al. [14] obtained equivalent solu-
tions using a methodology in which the perturbation is performed
on the primary flow variables, i.e. on the velocity components and
the pressure. Housiadas and collaborators [9,15,16] extended the
primary-variable perturbation method to derive solutions of the
plane and axisymmetric Poiseuille flows of a weakly compressible
viscoelastic Oldroyd-B fluid.

Flows of fluids with pressure-dependent viscosity have re-
ceived an increasing attention recently. The viscosity of typical liq-
uids begins to increase substantially with pressurewhen pressures
of the order of 1000 atm are reached [17]. In fact, under certain
conditions, e.g. in elastohydrodynamics, the dependence of the vis-
cosity on pressure may be several orders of magnitude stronger
than that of density [3,17,18]. Málek and Rajagopal [19] reviewed
different equations proposed in the literature in order to describe
experimental observations on the pressure-dependence of the
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viscosity. The pressure-dependence of the viscosity in Poiseuille
and other flows has been analyzed mathematically by various in-
vestigators [17,19–21]. Renardy [17] employed the following linear
expression for the viscosity, η∗:

η∗
= η∗

0


1 + δ∗(p∗

− p∗

0)


(2)
where δ∗ is the viscosity–pressure-dependence material constant
and η∗

0 is the viscosity at the reference pressure p∗

0 . Recently, Kalo-
girou et al. [22] compiled analytical solutions for unidirectional
plane, round, and annular Poiseuille flows of a Newtonian liquid
assuming that the viscosity obeys Eq. (2).

In the present work, we consider the steady, isothermal New-
tonian Poiseuille flows in a straight channel or slit and in a circu-
lar tube, for which both the mass density and the viscosity of the
fluid depend weakly on pressure, obeying Eqs. (1) and (2), respec-
tively. To our knowledge, studies taking into account both the com-
pressibility and the viscosity–pressure-dependence are very scarce
in the literature. Since exact analytical solutions are not possible,
the objective is to obtain approximate analytical solutions for these
flows by means of perturbation methods.

The rest of the paper is organized as follows. In Section 2, the
governing equations and the boundary conditions are presented. In
Section 3, themain steps of the perturbationmethod are discussed.
All flow variables are expressed as double asymptotic expansions
in terms of the dimensionless isothermal compressibility and the
viscosity–pressure coefficient, which serve as small perturbation
parameters. Perturbation solutions are then derived up to second
order. The resulting analytical solutions are discussed in Section 4.
It is shown in particular that at least up to second order the
viscosity–pressure-dependence tends to reduce the velocity in the
flow direction and to counterbalance compressibility effects on the
pressure. Finally, in Section 5, concluding remarks are provided.

2. Problem and formulation

We consider the steady, weakly compressible isothermal flow
of a Newtonian fluid with pressure-dependent viscosity, under
zero gravity. The continuity and momentum equations can be
written as follows:
∇

∗
· (ρ∗u∗) = 0 (3)

ρ∗u∗
· ∇

∗u∗
= −∇

∗p∗
+ ∇

∗
· τ∗ (4)

where u∗ is the velocity vector and τ∗ is the viscous extra-stress
tensor, given by

τ∗
= η∗(p∗)


∇

∗u∗
+ (∇∗u∗)T −

2
3
I(∇∗

· u∗)


. (5)

In Eq. (5), ∇∗u∗ is the velocity-gradient tensor, the superscript T
denotes the transpose, and I is the unit tensor. Substituting Eq.
(5) into Eq. (4) leads to the following generalized Navier–Stokes
equation:

ρ∗u∗
· ∇

∗u∗
= −∇

∗p∗
+ η∗

∇
∗2u∗

+
∂η∗

∂p∗

×


∇

∗p∗
·

∇

∗u∗
+ (∇∗u∗)T


−

2
3
(∇∗

· u∗)∇∗p∗


+

η∗

3
∇

∗(∇∗
· u∗). (6)

Two flow geometrical configurations are studied; the first is the
axisymmetric Poiseuille flow in a circular tube of constant radius
R∗ and length L∗ in cylindrical coordinates (r∗, z∗), and the second
is the planar Poiseuille flow in a straight channel (or slit) of width
2H∗ and length L∗ in Cartesian coordinates (x∗, y∗) centered at the
midplane. In the following, we present the axisymmetric case in
more detail and provide the most important results for the planar
case.

2.1. Axisymmetric flow

For the flow in a circular tube, the governing equations are
rendered dimensionless scaling r∗ by R∗, z∗ by L∗, u∗

z by U∗, u∗
r

by U∗R∗/L∗, and p∗
− p∗

0 by 8η∗

0L
∗U∗/R∗2, where U∗ is the mean

velocity at the tube exit. The mass density and the viscosity are
scaled by ρ∗

0 and η∗

0 , respectively. Thus, the two components of the
momentum equation (6), the continuity equation (3), the equation
of state (1), and the equation for the shear viscosity (2) become:

αReρ

ur

∂uz

∂r
+ uz

∂uz

∂z


= −8

∂p
∂z

+
η

3


3
r

∂

∂r


r
∂uz

∂r


+ 4α2 ∂2uz

∂z2
+ α2 ∂

∂z


1
r

∂

∂r
(rur)


+

2α2

3
∂η

∂z


2
∂uz

∂z
−

1
r

∂

∂r
(rur)


+

∂η

∂r


∂uz

∂r
+ α2 ∂ur

∂z


(7)

α3Re ρ


ur

∂ur

∂r
+ uz

∂ur

∂z


= −8

∂p
∂r

+ α2η


4
3

∂

∂r


1
r

∂

∂r
(rur)


+

1
3

∂2uz

∂r∂z
+ α2 ∂2ur

∂z2


+ 2α2 ∂η

∂r


∂ur

∂r
−

1
3r

∂

∂r
(rur) −

1
3

∂uz

∂z


+ α2 ∂η

∂z


α2 ∂ur

∂z
+

∂uz

∂r


(8)

∂(ρrur)

∂r
+

∂(ρruz)

∂z
= 0 (9)

ρ = 1 + εp (10)
η = 1 + δp (11)

where the Reynolds number, Re, the aspect ratio of the tube, α,
the dimensionless compressibility number, ε, and the viscosity
pressure-dependence number, δ, are respectively defined by:

Re ≡
ρ∗

0U
∗R∗

η∗

0
, α ≡

R∗

L∗
,

ε ≡
8ε∗η∗

0L
∗U∗

R∗2
, δ ≡

8δ∗η∗

0L
∗U∗

R∗2
.

(12)

The systemof equations (7)–(11) closeswith appropriate boundary
conditions. Along the axis of symmetry, symmetry conditions are
applied:

∂uz

∂r
(0, z) = ur(0, z) = 0, 0 ≤ z ≤ 1. (13)

Also, no-slip and no-penetration are imposed along the tube wall:

ur(1, z) = uz(1, z) = 0, 0 ≤ z ≤ 1. (14)

Moreover, the pressure datum is set at the tube exit,

p(1, 1) = 0 (15)

and the dimensionless mass flow rate is unity at any distance
z ∈ [0, 1] from the inlet plane:

2
 1

0
ρuzrdr = 1. (16)

2.2. Planar flow

The governing equations are rendered dimensionless by scaling
x∗ by L∗, y∗ by H∗, u∗

x by U∗, u∗
y by U∗H∗/L∗, and p∗

− p∗

0 by
3η∗

0L
∗U∗/H∗2, where U∗ is the mean velocity (per unit width) at
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