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a b s t r a c t

A fully-coupled partitioned finite volume–finite volume and hybrid finite volume–finite element
fluid–structure interaction scheme is presented. The fluid domain is modelled as a viscous incompress-
ible isothermal region governed by the Navier–Stokes equations and discretised using an edge-based
hybrid-unstructured vertex-centred finite volume methodology. The structure, consisting of a homo-
geneous isotropic elastic solid undergoing large, non-linear deformations, is discretised using either
an elemental/nodal-strain finite volume approach or isoparametric Q8 finite elements and is solved
using a matrix-free dual-timestepping approach. Coupling is on the solver sub-iteration level leading
to a tighter coupling than if the subdomains are converged separately. The solver is parallelised for
distributed-memory systems using METIS for domain-decomposition and MPI for inter-domain com-
munication. The developed technology is evaluated by application to benchmark problems for strongly-
coupled fluid–structure interaction systems. It is demonstrated that the scheme results in full coupling
between the fluid and solid domains, whilst furnishing accurate solutions.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

While the field of Computational Mechanics has traditionally
been dominated by structural and fluid modelling in isolation,
many problems of interest are in truth strongly dynamic systems
where there is a close coupling between fluid and solid domains.
Fluid–Structure Interaction (FSI)modelling is a branchof Computa-
tionalMechanicswhich aims at accurately calculating these effects
in a quantitative manner. For example, in aeroelastic systems, one
important phenomenon is non-linear flutter response which has
spawned the field of Computational Aeroelastics [1,2]. Computa-
tional Biomechanics is another major area in which complex dy-
namic structural responses are intimately coupled with fluid flow
in cardiac, arterial and respiratory systems [3–6]. Other examples
of such problems include structural loads on ships [7], flow in-
duced vibrations in nuclear power plants [8] and wind response
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of buildings [9]. Though recent years have seen much research go-
ing into the development of FSI modelling technology [10–14], the
efficient and robustmodelling of large-scale, strongly-coupled sys-
tems which involve complex geometries is still a work in progress.
In this paper, we develop and evaluate a fully-coupled, matrix-free
methodology as a contribution towards this challenge. This is in-
corporated into the Elemental1 flow solver developed for multi-
physics applications [15].

This work focuses on FSI systems where there are strong in-
teractions between the fluid and structural domains and weakly-
coupled methods are, therefore, not considered as they may
diverge or result in inaccurate solutions [16–19]. As a result, re-
cent research in the field has been devoted to developing strongly-
coupledmodelling technologies. Strongly-coupledmethods can be
sub-classified into separate or partitioned and single or monolithic
solutionmethods. The advantage of amonolithic over a partitioned

1 Elemental referred to in this paper was a scientific toolbox founded by A.G.
Malan and has been deprecated in its entirety. A new ElementalTM has since been
developed at Univ. of Cape Town which is being commercialised by Elemental
Numerics (Pty) Ltd.
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approach is that all the equations are considered simultaneously
and a single system of equations is solved, which ensures stabil-
ity and convergence. However, this approach may suffer from ill
conditioning and convergence is generally slow [16]. The advan-
tage of a partitioned approach is that it allows the use of two in-
dependent solution techniques for the fluid and solid equations in
isolation. The drawback of partitioned approaches is that they gen-
erally require a separate coupling algorithm or additional outer it-
erations between the fluid and solid to achieve strong-coupling,
which places an additional computational cost on the scheme
[16,20,21]. The most popular partitioned coupling algorithms use
fixed-point iteration methods or interface Newton–Krylov meth-
ods [22,20]. Fixed-point methods generally make use of Gauss–
Seidel iterations which are slow to converge and methods to
accelerate convergence, including Aitken and steepest descent re-
laxation and coarse-grid preconditioning, have been used [22,19,
23,24,21]. The Newton–Raphson methods require the computa-
tion of Jacobians, which may be difficult to compute exactly and
various methods have been developed that use approximate Jaco-
bians [25–27].

For the purpose of this work the fluid and structural domains
are to be solved in a strongly-coupled partitioned manner, where
the transfer of information occurs at solver sub-iteration level lead-
ing to a tighter coupling than if the subdomains are converged sep-
arately and negating the need for a separate coupling algorithm.
This leads to a fully-converged solution at each timestep where
both dynamic and kinematic continuity – i.e. continuity of forces
and velocities – are satisfied at the fluid/solid interface. Our ap-
proach allows independence with respect to spatial discretisation
of the fluid and solid domains. Many recent FSI efforts have made
use of a single discretisation scheme, either finite volume [28,17,
29,30] or finite element [16,18,31–34], to solve the entire domain,
which simplifies the treatment at the interface of the fluid and solid
domain. However, each method contains certain inherent advan-
tages and should be used as such. In this work we have chosen to
use the finite volume method for the fluid domain. For the solid
domain, we use both the finite element method and an enhanced
finite volumemethod [35,36]. The enhanced finite volumemethod
is essentially a hybrid between the traditional node-based finite
volumemethod, which suffers from locking with high aspect-ratio
elements [35], and the element-based strain method [29], which
suffers from odd–even decoupling. The fluid physics is described
with the incompressible Navier–Stokes equation written for an
Arbitrary Lagrangian–Eulerian (ALE) coordinate frame. A total La-
grangian formulation is employed in the case of the solid. This
prevents discretisation errors from accumulating over time. Dy-
namic unstructured fluid mesh movement technology is devel-
oped using a simple interpolation method in the interests of com-
putational efficiency and parallelisability. For the finite volume
method, the non-linear, unified governing equations are spatially
discretised via a compact unstructured, edge-based finite volume
methodwhose spatial accuracy is notionally of second order. In the
interests of both computational and programming efficiency, the
chosen spatial discretisation algorithm should be naturally appli-
cable to any part of a fluid or solid mesh. In the case of the fluid,
this is achieved by employing an edge-based compact [37,38] dis-
cretisation methodology, which holds the additional advantage of
being computationally considerably more efficient than element-
based approaches [39] while being ideally applicable to massively
parallel distributed memory machines. For the solid domain, we
use both the enhanced finite volume method, which is a hybrid of
the traditional node-based approach and the element-based strain
method, as well as a higher-order Q8 finite element solver. The
coupling of a higher-order finite element formulation for the struc-
ture and a linear finite volume formulation for the fluid leads to

non-matching nodes at the fluid/solid interface and the transfer
of information at these nodes will also be addressed in this paper.
Dual-timestepping [40] is employed for the purpose of temporal
discretisation.

As noted, the proposed partitioned modelling method allows
for complete flexibility in terms of the solution strategy employed
for the fluid and solid domains as these contain widely varying
characteristic velocities—the fluid may be incompressible while
the solid may range from compressible to almost incompressible.
In the case of the fluid, the Artificial Compressibility Characteris-
tic Based Split (CBS-AC) algorithm [41–43] is used. This scheme
combines two historically opposing methodologies viz. pressure
based (pressure projection—PP) proposed by Patankar [44] and the
density based (artificial-compressibility—AC) method introduced
by Chorin [45]. The scheme allows matrix-free solution of com-
pressible as well as incompressible flows, which is of key value to
large scale distributed memory computing. In this work the CBS-
AC algorithm has been extended to an ALE co-ordinate frame. The
solid equations are solved via a Jacobi iterative dual-timestepping
scheme which is implemented such as to ensure matrix-free and
robust solution. Finally, themodelling technology outlined above is
validated by application to problems from the literature. The cou-
pled solver is applied to strongly-coupled large-displacement FSI
benchmark problems. Rigorous temporal and mesh independent
studies are presented.

The outline of this paper is as follows: in Section 2 we present
the governing equations for fluid and solid domains, then describe
the discretisation, numerical solution and coupling algorithm in
Section 3. In Section 4 we detail the mesh movement algorithm
used, and in Section 5 discuss parallelisation of the code. We
present numerical applications in Section 6 before concluding in
Section 7.

2. Governing equations

The fluid–structure interaction to be modelled consists of a
viscous incompressible isothermal fluid domain and homogeneous
isotropic elastic solid region. The mechanics of each is described
via the appropriate governing equation set,which is detailed in this
section. Note that for the purposes of this work, the fluid-boundary
mesh is fitted to the deforming solid.

2.1. Fluid equations

The fluid flow is governed by the Navier–Stokes equations.
In general, these equations are expressed in an Eulerian or spa-
tial frame of reference, which entails a fixed spatial region with
fluid flowing through it. For fluid–structure interaction problems
the solid deforms and displaces the fluid domain and the fluid
equations are written in a manner which allows a Lagrangian de-
scription at the fluid–solid interface interpolating to an Eulerian
description at the outer boundaries. For this purpose an arbitrary-
Lagrangian–Eulerian (ALE) reference frame is used,which accounts
for the motion of the FSI interface. The ALE approach was first de-
scribed by Hirt et al. [46] and later adopted by many others and is
now widely used for FSI applications [47]. A dynamic mesh move-
ment algorithm that deforms the fluid mesh is therefore required
and is described later. The deforming-spatial-domain/space–time
procedure [48,49] is another popular method for treating moving
boundaries and interfaces, while other formulations that utilise a
fixed mesh, including immersed boundary [50] and fictitious do-
main [51] methods, can also be used to perform FSI simulations.

Assuming a viscous, incompressible and isothermal fluid, the
equations governing the fluid flow are given by the continuity and
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