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In this paper we present an exact solution to the governing equations for equatorial geophysical water
waves which admit an underlying current.
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1. Introduction

In this paper we present an exact solution to the β-plane
governing equations for geophysical water waves which admit
an underlying current. Geophysical ocean waves are those which
take into account the Coriolis effects on the fluid body which are
induced by the earth’s rotation, and the β-plane approximation to
the full governing equations applies in regions which are within 5◦

latitude of the equator [1,2]. Thewave solutionwhichwe construct
in this paper corresponds to steady zonal waves, travelling in the
longitudinal direction with a constant speed of propagation c >
0, and which experience the presence of a constant underlying
current of strength c0.

Currents, such as the equatorial undercurrent (EUC), feature
significantly in the geophysical dynamics of the equatorial
region [3,1]. For instance, the El Niño phenomenon has recently
been ascribed to the interplay between currents in the ocean and
atmosphere [4], and the model we present in this paper is the first
approach in incorporating the effects of a current into an exact
solution for the governing equations. Additionally, the equator has
the remarkable property of acting like a natural waveguide [5].
Accordingly, waves tend to be trapped in the equatorial region,
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and the waves which we present below inherit this feature—the
amplitude of the waves decays rapidly in the meridional direction.

The approach we use to construct these waves is in the
spirit of Gerstner’s solution for the governing equations of two-
dimensional gravity water waves, with significant modifications
to incorporate geophysical effects along the lines of [6]. In 1802
Gerstner [7] found an explicit solution in Lagrangian variables for
the full water wave equations (the form of this solution was later
independently discovered by Rankine). Gerstner’s wave is truly
remarkable in the mathematical sense that it is one of only a
handful of explicit solutions to the full governing equation which
have been constructed [8]. Gerstner’s wave is a periodic travelling
wave with a specific vorticity distribution (see [9,8,10] for a
modern treatment of Gerstner’s wave). Although the prescription
of the flow is quite specific and rigid, remarkably this flow has
been recently adapted to describe awide variety of interesting, and
physically varied, water waves (cf. [8,11–13], and particularly [6],
where an exact solution to the geophysical governing equations
was first derived). We note that all fluid particles follow closed
trajectories in Gerstner’s wave, something which is precluded for
regular irrotational waves [14–22] and which must be due to the
underlying vorticity distribution.

The introduction of a current-like term into Gerstner’s formu-
lation was performed by Mollo-Christensen [23] in the study of
billows between two fluids. Here, we expand this formulation to
admit the Coriolis effects of the rotating earth—these effects fea-
ture significantly for such large scale phenomena as currents. In
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particular, we find that the introduction of a steady underlying cur-
rent in the geophysical context has interesting implications for the
fluid motion, particularly in relation to the dispersion relation.

2. Governing equations

We take the earth to be a perfect sphere of radius R = 6378 km,
which has a constant rotational speed of Ω = 73.10−6 rad/s.
Then g = 9.8 ms−2 is the standard gravitational acceleration at
the earth’s surface, and β = 2Ω/R = 2.28 · 10−11 m−1 s−1 is
a parameter which will arise in subsequent considerations [1,2].
From the viewpoint of a rotating reference frame with its origin
at the earth’s surface, so that the {x, y, z}-coordinate frame is
chosenwith z as the vertical variable, x as the longitudinal variable
(in the direction due east), and y as the latitudinal variable (in
the direction due north), the governing equations for geophysical
ocean waves are given by Gallagher and Saint-Raymond [2]
ut + uux + vuy + wuz + 2Ωw cosφ

− 2Ωv sinφ = −
1
ρ
Px, (1a)

vt + uvx + vvy + wvz + 2Ωu sinφ = −
1
ρ
Py, (1b)

wt + uwx + vwy + wwz − 2Ωu cosφ = −
1
ρ
Pz − g, (1c)

together with the equation for mass conservation
ρt + uρx + vρy + wρz = 0 (2a)
and the equation of incompressibility
ux + vy + wz = 0. (2b)
Here the variable φ represents the latitude, (u, v, w) is the velocity
field of the fluid,ρ is the density of the fluid, and P is the pressure of
the fluid. The β-plane approximation of the geophysical governing
equations applies when we are working in regions which are
within 5◦ latitude of the equator. There, the latitude φ is small and
hence the approximations sinφ ≈ φ, cosφ ≈ 1 are valid, resulting
in the β-plane governing equations [2]

ut + uux + vuy + wuz + 2Ωw − βyv = −
1
ρ
Px, (a)

vt + uvx + vvy + wvz + βyu = −
1
ρ
Py, (b)

wt + uwx + vwy + wwz − 2Ωu = −
1
ρ
Pz − g. (c)

(2c)

The boundary conditions for the fluid are given by
w = ηt + uηx + vηy on y = η(x, y, t), (2d)

P = P0 on y = η(x, y, t). (2e)
Here η represents the free-surface and P0 is the constant atmo-
spheric pressure. The kinematic boundary condition on the sur-
face simply states that all surface particles remain confined to the
surface. Since we are interested in waves which are trapped in
the equatorial region, we stipulate in the following that the wave
surface profile decays in the latitudinal directions away from the
equator. Finally, we assume the water to be infinitely deep, with
the flow converging to a uniform current rapidly with depth, that
is,
(u, v) → (−c0, 0) as y → −∞. (2f)

3. Lagrangian dynamics

In this section we define an exact solution of the β-plane gov-
erning equations (2). The solution represents steady waves trav-
elling in the longitudinal direction, which have a constant speed
of propagation c > 0, in the presence of a constant underlying

current of strength c0. We adopt the Lagrangian approach [24],
whereby the Eulerian coordinates of fluid particles (x, y, z) are ex-
pressed as functions of the Lagrangian labelling variables (q, r, s) ∈

(R, (−∞, r0), R), and time t , as follows:

x = q − c0t −
1
k
ek[r−f (s)] sin[k(q − ct)], (3a)

y = s, (3b)

z = r +
1
k
ek[r−f (s)] cos[k(q − ct)], (3c)

where r0 < 0 and k is the wavenumber. The function f (s) essen-
tially determines the decay of the particle oscillation as it moves in
the latitudinal direction away from the equator, and for the present
construction we choose

f (s) =
cβ
2γ

s2, (4)

where

γ = 2Ωc0 + g. (5)

For notational convenience let us choose

ξ = k (r − f (s)) , θ = k(q − ct).

Then the Jacobian matrix of the transformation (3) is given by
∂x
∂q

∂y
∂q

∂z
∂q

∂x
∂s

∂y
∂s

∂z
∂s

∂x
∂r

∂y
∂r

∂z
∂r

 =

1 − eξ cos θ 0 −eξ sin θ

fseξ sin θ 1 −fseξ cos θ

−eξ sin θ 0 1 + eξ cos θ

 . (6)

The determinant of the Jacobian is 1 − e2ξ , which is time indepen-
dent; thus it follows that the flow defined by (3) must be volume
preserving, ensuring that (2b) holds in the Eulerian setting [24].
We further remark that, in order for the transformation (3) to be
well-defined, and to furthermore ensure that our flow has the ap-
propriate decay properties (in both the vertical and the latitudinal
directions), we stipulate that

r − f (s) ≤ r0 < 0. (7)

We note that this relation forces the choice c > 0 for our flow.
Bearing in mind that we are seeking trapped equatorial waves, we
take v ≡ 0 throughout the fluid, and we calculate

u =
Dx
Dt

= ceξ cos θ − c0,
Du
Dt

= kc2eξ sin θ, (8a)

v =
Dy
Dt

= 0,
Dv

Dt
= 0, (8b)

w =
Dz
Dt

= ceξ sin θ,
Dw

Dt
= −kc2eξ cos θ, (8c)

where D/Dt is the material derivative. We can express (2c) as
Du
Dt

+ 2Ωw = −
1
ρ
Px,

Dv

Dt
+ βyu = −

1
ρ
Py,

Dw

Dt
− 2Ωu = −

1
ρ
Pz − g,

and inserting the terms from (8) in this gives us

Px = −ρ(kc2eξ sin θ + 2Ωceξ sin θ), (9a)

Py = −ρ(βs[ceξ cos θ − c0]), (9b)

Pz = −ρ(−kc2eξ cos θ − 2Ωceξ cos θ + γ ). (9c)
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