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a b s t r a c t

The dual basic tasks of evaluating ship waves at the free surface and of removing unwanted short waves
are consideredwithin the framework of the ‘free-surface Green function potential flow theory’, based on a
Green function that satisfies the radiation condition and theKelvin–Michell linearized boundary condition
at the free surface. A practical approach based on parabolic extrapolation within an extrapolation layer
bordering the free surface is used. The height of the extrapolation layer is defined explicitly via simple
analytical relations in terms of the Froude number and the slenderness of the ship hull, and varies
from the bow to the stern. The bow-to-stern variation is an important ingredient that accounts for the
fact that waves along the ship hull aft of the bow wave differ from the bow wave. Indeed, a ship bow
wave is significantly higher and shorter than waves aft of the bow wave, is affected by nearfield effects
related to the rapid variation of the hull geometry at a ship bow, and consequently contains more short
wave components. Illustrative calculations demonstrate the need for removing short ship waves and the
effectiveness of the approach based on parabolic extrapolation.

Published by Elsevier Masson SAS.

1. Introduction

An offshore structure (or any other floating body without mean
forward speed) in ambient time-harmonic (regular) waves with
frequencyω generates a systemof (diffracted–radiated)waves that
all have the same frequency ω and wavelength λ = 2πg/ω2.
Such a system of waves, with a single discrete wavelength, differs
in a fundamental respect from the waves – with a continuous
spectrum of wavelengths – that are generated by a ship advancing
in calm water or in ambient regular waves. In particular, for the
simplest case of a ship advancing with forward speed Vs in calm
water considered here, the ship creates waves with a spectrum
of wavelengths λ within the range 0 ≤ λ ≤ 2πV 2

s /g . Thus,
ship waves defined within the classical framework of potential
flow theory include very short waves that can be significantly
affected by surface tension and viscosity, and consequently are
physically unrealistic. The spectrumof shipwavesmay also include
waves that are not appreciably affected by surface tension and
viscosity but are short with respect to the ship length Ls, and
consequently may have a limited effect on the ship drag, sinkage
and trim. There is then a practical need for eliminating short
waves in the spectrum of waves generated by ships. Indeed, an
effective andpracticalmethod for filtering short gravitywaves is an
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important ingredient of any numerical method for computing ship
waves. This basic issue is considered here within the framework
of the ‘free-surface Green function potential flow theory’, based
on a Green function that satisfies the radiation condition and the
Kelvin–Michell linearized boundary condition at the free surface.

Thus, we consider linear potential flow about a ship hull of
length Ls that steadily advances at speed Vs along a straight path
in calm water of effectively infinite depth and lateral extent. The
flow about the ship hull is observed from a righthanded moving
system of orthogonal coordinates X ≡ (X, Y , Z) attached to the
ship, and thus appears steady with flow velocity given by the sum
of an apparent uniform current (−Vs, 0, 0) opposing the ship speed
Vs and the (disturbance) flow velocity U ≡ (U, V ,W ) due to the
ship. The X axis is chosen along the path of the ship and points
toward the ship bow. The Z axis is vertical and points upward,
with the mean (undisturbed) free surface taken as the plane Z =

0. The length Ls and the speed Vs of the ship are used to define
nondimensional coordinates x ≡ X/Ls and flow potential φ ≡

Φ/(VsLs).
We define the usual Froude number F ≡ Vs/

√
gLs where g

is the acceleration of gravity. We also define the Froude number
FBD ≡ Vs/


gLBD based on a transverse dimension LBD of the ship

hull that is chosen as LBD ≡ BD/(B/2 + D). We have LBD < B and
LBD < 2D. The Froude numbers F and FBD based on the length Ls or
the transverse dimension LBD of the ship are related as

FBD ≡
F

√
σH

where σH
≡

LBD

Ls
≡

bd
b/2 + d
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with b ≡
B
Ls

and d ≡
D
Ls
. (1)

For a beam/length ratio b = 0.15 and a draft/length ratio d = 0.05,
the hull slenderness is σH

= 0.06.
As already noted, the flow about the ship is considered within

the framework of the ‘free-surface Green function method’ based
on a Green function G(x; x) that satisfies the radiation condition
and the Kelvin–Michell linearized boundary condition at the free
surface. The points x ≡ (x, y, z) and x ≡ (x,y,z) stand for
‘boundary points’ located on the ship hull surface ΣH , and ‘flow-
field points’ located onΣH or in the flow region outsideΣH .

Within this approach, the flow potential φ ≡ φ(x) at a flow
field point x can be expressed as φ = φL

+ φW where φL

represents a nonoscillatory local flow component andφW defines
thewaves generated by the ship. These local andwave components
are associated with the decomposition G = L + W of the Green
function G into a local flow component L and a wave component
W , as in e.g. [1]. The local flow potentialφL is not considered here.

Thus, we only consider the wave potentialφW . Within the free-
surface Green function approach, the wave potentialφW

≡ φW (x)
at a flow field pointx ≡ (x,y,z ≤ 0) is expressed as a Fourier
superposition of elementary plane waves E. Specifically, φW is
given by

φW
=

1
π

ℑm


∞

−∞

dkSE
withE ≡ e (1+k2)z/F2+ i

√
1+k2 (x+ky)/F2 (2)

e.g. [2,3]. The amplitudeS ≡S(k;x) of the elementary wavesE in
the Fourier representation (2), called the wave-spectrum function
or Kochin function, is also given by a Fourier superposition of
elementary plane waves. Specifically, the wave-spectrum functionS in (2) is given by a distribution of elementary waves E over the
portionΣH of themeanwetted ship hull surfaceΣH that is defined
byx ≤ x. We then have

S ≡
1
F 2


ΣH

da A E with E ≡ e (1+k2)z/F2− i
√

1+k2 (x+ky)/F2 . (3)

Here, da ≡ da(x) is the differential element of area at a point x of
the ship hull surfaceΣH .

An important particular case of the generic Fourier–Kochin
representation (2)–(3) of ship waves is the wave potential φW

H
associated with the Hogner slender-ship potentialφH given in [4].
In this special case, the amplitude A of the elementary wave E in
the wave-spectrum functionS is given by

A = AH with AH
≡ nx. (4)

Here, n ≡ (nx, ny, nz) is a unit vector that is normal to ΣH at x
and points outsideΣH , i.e. into thewater. The Hogner slender-ship
approximation (4), defined explicitly in terms of the hull geometry,
is useful for many practical applications. Furthermore, this explicit
flow approximation is a major element of the Neumann–Michell
(NM) theory of ship waves given in [3] and considered further on.
Indeed, theNM theory provides a correction of theHogner slender-
ship potentialφH given in [4].

The wavelength λ of the elementary wavesE and E in (2) and
(3) is given by

0 ≤ λ ≡ 2πF 2/(1 + k2) ≤ 2πF 2
≡ λ0 (5a)

where λ0 is the wavelength of the transverse waves generated
by a ship along its track. Transverse and divergent ship waves
correspond to |k| < 1/

√
2 ≈ 0.71 and 1/

√
2 < |k|, respectively;

e.g. [5]. The ratio

λ/λ0 = 1/(1 + k2) (5b)

is equal to 1/2 for k = 1, 1/3 for k =
√
2, 1/5 for k = 2, 1/10 for

k = 3, and approximately 6% or 4% for k = 4 or k = 5. Thus, values
of |k| greater than 3 correspond to waves that are significantly
shorter than the longest waves created by a ship.

The continuous spectrum of waves generated by a ship can
be usefully divided into ‘long waves’ associated with the range
−klong ≤ k ≤ klong where the cutoff wavenumber klong
can reasonably be taken as 3 or even 2, and ‘short waves’ that
correspond to klong ≤ |k|. These short waves can be further divided
into ‘short gravity waves’ that are too long to be significantly
affected by surface tension and viscous effects, and ‘very short
waves’ for which surface tension and viscous effects cannot
be ignored. An elegant physics-based theory that accounts for
the influence of surface tension and viscosity on gravity waves
generated by a ship hull advancing in calm water or in ambient
time-harmonic waves is expounded in [6–9]. Surface tension and
viscosity are ignored here for simplicity, and because the cutoff
wavenumber klong is expected to correspond to relatively long
waves not significantly affected by surface tension and viscosity
(although that may not always be the case at model scale).

For a fully submerged body, for which z ≤ −δ where 0 < δ is
the distance between the free surface plane z = 0 and the highest
point of the submerged body surface (point nearest the mean
free surface), we have |E| ≤ e−(1+k2)δ/F2 . Thus, the elementary
wave function E and consequently the spectrum functionS decay
exponentially as k → ±∞ for a fully submerged body. The Fourier
integral (2) therefore converges for every value ofz ≤ 0, and does
not contain short waves, in this special case.

However, the situation is different, andmore complicated, for a
surface-piercing ship hull ΣH , for which z ≤ 0 and the function E
does not decay exponentially as k → ±∞. Ifz ≤ −h < 0, i.e. for
flow field pointsx at some distance below the mean free surfacez = 0, the exponential functionE in (2) decays exponentially in
the limit k → ±∞ and the Fourier integral (2) can be evaluated
accurately. In practice, the infinite limits of integration in (2) are
replaced by finite limits ±k∞. The functionE is smaller than 0.7%
if (1 + k2)z/F 2 < −5, and (2) can be evaluated accurately forz ≤ −h∞ with

h∞ ≡ 5F 2/(1 + k2
∞
). (6)

Convergence of the Fourier integral (2) is not a priori obvious for
−h∞ <z ≤ 0, i.e. for flow field pointsx in the vicinity of the free
surfacez = 0. Indeed, we haveE = 1 ifz = 0, for every value of
the Fourier variable k.

Furthermore, the relation (6) yields k∞ → ∞ as h∞ → 0,
and therefore implies that the wave potential φW includes very
short waves in this limit. However, very short gravity waves are
unrealistic because surface tension and viscous effects, ignored
in (2) and (3), cannot be neglected in the short-wave limit k →

∞, and because short waves that correspond to klong ≤ |k| are
of limited interest for most practical applications. Thus, robust
evaluation of the wave integral (2) for −h∞ < z ≤ 0 is a
nontrivial basic issue for the computation of ship waves within the
framework of the free-surface Green function approach.

A practical way of evaluating the Fourier integral (2) at and near
the mean free surfacez = 0 is then required. To this end, the
Fourier representation (2) can be modified as

φW
=

1
π

ℑm
 k∞

−k∞
dkΛSE. (7)

Selection of an appropriate finite limit of integration (cut-off
wavenumber) k∞, and an effective short-wave filter functionΛ are
important elements of the free-surface Green function theory of
ship waves as already noted.
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