Accepted Manuscript

Experimental and numerical study of parabolic trough solar collector of Micro-Sol-R tests platform

Belkacem Agagna, Arezki Smaili, Quentin Falcoz, Omar Behar

PII: S0894-1777(18)30492-8

DOI: https://doi.org/10.1016/j.expthermflusci.2018.06.001

Reference: ETF 9497

To appear in: Experimental Thermal and Fluid Science

Received Date: 29 March 2018 Revised Date: 25 May 2018 Accepted Date: 1 June 2018

Please cite this article as: B. Agagna, A. Smaili, Q. Falcoz, O. Behar, Experimental and numerical study of parabolic trough solar collector of MicroSol-R tests platform, *Experimental Thermal and Fluid Science* (2018), doi: https://doi.org/10.1016/j.expthermflusci.2018.06.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Experimental and numerical study of parabolic trough solar collector of MicroSol-R tests platform

Belkacem Agagna^{1*}, Arezki Smaili¹, Quentin Falcoz², Omar Behar²

¹Mechanical Engineering and Development Laboratory

¹Ecole Nationale Polytechnique, B.P 182 El-Harrach, Algiers, 16200, Algeria

²Processes, Materials and Solar Energy Laboratory, 7 rue du four solaire, Odeillo-Font-Romeu, 66120, France

(*) Corresponding author. E-mail: belkacem.agagna@g.enp.edu.dz

Email addresses: arezki.smaili@g.enp.edu.dz, quentin.falcoz@promes.cnrs.fr, omar.behar@promes.cnrs.fr

Abstract

PROMES-CNRS laboratory has recently inaugurated a small scale parabolic trough power plant, named "MicroSol-R", for research activities. The platform is aimed to test and improve various technologies including thermal energy storage, power conversion cycle, heat transfer fluid and collectors. This article highlights the experimental and numerical investigation of the Parabolic Trough Collector (PTC) of this platform.

The experimental tests, which have been conducted during the period of 2016-2017, to evaluate the optical and thermal performance of the PTCs are reported in the first part of this article. These include the optical and thermal qualifications, the incidence angle modifier, the optical efficiency and the useful thermal heat.

In the second part of the article, three numerical models of different complexity have been developed, validated and then compared. The main goal is to identify the advantages and the limitations of each model with respect to the others and therefore, selecting the most suitable tool for modeling the PTCs.

Download English Version:

https://daneshyari.com/en/article/7051524

Download Persian Version:

https://daneshyari.com/article/7051524

<u>Daneshyari.com</u>