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Oil-water two-phase flow phenomena are frequently encountered in many industrial processes. Droplet size and
its distribution are important characteristics of oil-in-water flows and have a significant effect on the interfacial
heat and mass transfers. In this study, we conduct an experiment on vertical oil-water two-phase flows with high
water volume fraction and low mixture velocity. The information of droplet sizes is collected using a double-ring
conductance probe during this experiment. We propose a multi-scale mean distance (MS-MD) and a multi-scale

short-term distribution entropy (MS-STDE) based on a multi-scale Poincaré plot to characterize the short-term
fluctuations of the probe signals. An empirical correlation is constructed based on the MS-MD to accurately
predict the mean droplet size of oil-in-water flows. Meanwhile, the MS-STDE enables to correlate the short-term
variability of collected probe signals to the complexity of the droplet sizes, and serves as a useful indicator of the

droplet size instability.

1. Introduction

Oil-water two-phase flows widely exist in the petroleum, chemical
and many other industries. The droplet sizes in oil-water flows have
significant influence on the interfacial heat and mass transfers.
Therefore, the measurement of the droplet sizes in oil-water flows is of
great significance for characterizing flow dynamics and modeling flow
parameters, such as drift velocity and phase volume fraction [1-4].

Methods, such as photography [5-7], electrical probes [8-11], wire-
mesh [12] and laser-based technique [13,14], have been developed in
the measurement of the droplet sizes in multi-phase flows. In particular,
Evgenidis and Karapantsios [15] found that the void fraction fluctua-
tions detected by a ring-shape conductance probe is positively corre-
lated with the bubble sizes in vertical gas-liquid two-phase flows. Thus,
analysis of the fluctuations of the probe signals is probably a beneficial
way to predict the oil droplet sizes in oil-water two-phase flows.

Nonlinear analysis based on the time series have made great pro-
gress in various complex systems, such as physiological EEG and ECG
systems [16-18], traffic system [19] and financial market system
[20-22]. In multi-phase flow system, Guo et al. [23] proposed a non-
linear weighed multi-scale wavelet analysis based on Gaussian filter to
detect the interfaces of different phases. Wang et al. [24] investigated
the non-homogenous distribution of the oil droplets in vertical oil-water
two-phase flows by a fractal scaling exponent. Zhuang et al. [25] de-
veloped a multi-scale weighted complexity entropy causality plane to
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indicate five typical oil-water-gas flow patterns. Mukherjee et al. [26]
applied a PDF analysis of optical probe signals to indentify the flow
patterns of upward gas-liquid-liquid three-phase flows. Wang et al. [27]
analyzed the time reverse asymmetry of gas-liquid flows by using a
multi-scale symbolic time-reverse method. The previous studies mainly
focus on the flow structure and its dynamical evolution. However, some
limitations exist in the measurement of droplet sizes using nonlinear
analysis.

Poincaré plot is a two-dimensional graphical representation of
temporal correlations within the adjacent values of a time series. Given
a time series of the form x;, x;;1, Xi+2, -+, @ Poincaré plot in its simplest
form first plots (x;, x;+1), then plots (x;;1, Xi1+2), then plots (X4, Xi+3),
and so on. As an effective way to qualify short-term and long-term
properties of time series, Poincaré plot geometry has been widely used
in the analysis of nonlinear systems. Tulppo et al. [28] fitted an ellipse
to the shape of a Poincaré plot to analyze the relations among its width,
its length and the variability of the studied system. Brennan et al. [29]
demonstrated that the width and length of the Poincaré plot cloud
corresponded to the level of short-term and long-term variability of the
system, respectively. The most common measures of Poincaré plot
geometry are SD1 (standard deviation of short-term variability), SD2
(standard deviation of long-term variability) and SD1/SD2 ratios
[30-34]. Hoshi et al. [35] verified the correlation among SD1, SD2,
SD1/SD2 ratios and other nonlinear variables such as sample entropy,
Lyapunov exponent, Hurst exponent (HE), correlation dimension and
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Fig. 1. Calculation of the distance from a point to the identity line of Poincaré
plot.

detrended fluctuation analysis (DFA). Interestingly, as a further devel-
opment of the geometry study, the point distribution characteristics on
the Poincaré plot have attracted attention. Przemyslaw et al. [36,37]
paid attention to how points on Poincaré plot distributed above and
below the identity line and proposed asymmetry features of short-term
blood pressure variability. Cohen et al. [38] derived a second-order
Poincaré plot and a central tendency measure (CTM) to quantify the
variability of time series, which effectively separated the congestive
heart failure patients from normal individuals. Based on the measures
of Cohen et al. [38], Huo et al. [39] analyzed the way in which points
on the Poincaré plot departed from the original point, and developed a
quadrantal multi-scale distribution entropy to describe the dispersion
features of the points. Based on the generalization of the conventional
two-dimensional Poincaré plot, Henriques et al. [40,41] introduced a
visualization method to investigate the multi-scale characteristics, self-
similarity and complexity loss of nonlinear systems. Ruan et al. [42]
concentrated on the angular dispersion and distance dispersion of the
points on the Poincaré plot and put forward the vector angular index
and vector length index, and then four measures characterizing the
dispersions of points on the Poincaré plot were extracted for atrial fi-
brillation detection.

In general, analysis of the feature how the points distribute on the
Poincaré plot reveals more details of nonlinear system. In order to
comprehensively reflect the short-term characteristics of the time
series, we propose a multi-scale mean distance (MS-MD) and a multi-
scale short-term distribution entropy (MS-STDE) to characterize the
short-term variability properties in different parallel regions of the
Poincaré plot. An experiment on vertical oil-water two-phase flows is
conducted. The proposed MS-MD is employed to predict the oil droplet
sizes of oil-in-water flows. In addition, we correlate the short-term
variability of collected probe signals to the complexity of the droplet
sizes.
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2. Materials and methods
2.1. Poincaré plot and short-term variability analysis

On the Poincaré plot of time series, each value of the series is re-
garded as a function of the preceding value. If the time series is denoted
as {x;}(i = 1, 2, ---n), the current value of the series x; is represented on
x-axis, and the value of the next time Xx;, is represented on y-axis. In
this way, each point (x;, x;1+1) on the Poincaré plot corresponds to two
successive values of the time series.

If the point (x;, x;41) is on the identity line of the Poincaré plot, that
is, x; is equal to x;;;, which means the state of the system has not
changed in per unit time. Besides, point (x;, X;+1) either above or below
the identity line corresponds to unequal neighboring values, which
means the state of the system has varied from Xx; to x;;; in per unit time.
Fig. 1 shows the calculation of the distance d from a point to the
identity line of the Poincaré plot. As can be seen, the distance d to the
identity line is proportional to Ix;;1—x;l. The shorter the distance is, the
lower the absolute difference of the two successive values will be, in-
dicating that the variability of the system is smaller in per unit time,
and vice versa. Thus, on the Poincaré plot, the distance from the point
to the identity line is a measure of the short-term variability level of the
system. The longer the distance is, the higher level the short-term
variability will be, and vice versa. Since the points on the identity line
do not reflect any short-term variability, only the points above or below
the identity line are taken into consideration in the following discus-
sions.

In addition, it should be noted that the level of short-term variability
does not always keep constant but fluctuates from time to time. In
Fig. 2(a), two data segments enclosed in rectangular frames are iden-
tical and fluctuate slightly. If we plot the points of the two segments
within the coordinates of (X(i), X(i + 1)), as shown in Fig. 2(b), the
points distribute near the identity line which indicates that the level of
the short-term variability is low. In Fig. 2(c), the data segments en-
closed in the rectangular frames fluctuate widely, and accordingly the
corresponding points on the Poincaré plot distribute far from the
identity line (see Fig. 2(d)), which implies that the level of the short-
term variability is high.

In order to characterize the short-term variability, we propose a new
distribution entropy, i.e., short-term distribution entropy (STDE), to
reveal the complexity of the short-term variability. As shown in Fig. 3
2N lines which all parallel with the identity line are created. The dis-
tance of the kth line to the identity line is set as

di=kd (1<k<N) @

where d is equal to d./N, and d . is the maximum distance of the
points to the identity line. Thus, the 2 N lines divide the whole Poincaré
plot into N subregions based on the distance of the pointes to the
identity line. In this way, the continuous change of the short-term
variability level is quantified into N kinds of levels of short-term
variability.

The number of the points in each subregion is counted to calculate
their ratios to all points in the studied region, which are denoted as
D1» Dy ++Py- Thus, the short-term distribution entropy (STDE) of the
Poincaré plot is defined as

N
STDE = - 3’ plog, p

i=1

(2)
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