Accepted Manuscript

Non-Uniformity of Gas/Liquid Flow in a Riser and Impact of Operation and Pipe Configuration on Slugging Characteristics

Suifeng Zou, Tian Yao, Liejin Guo, Wensheng Li, Quanhong Wu, Hongliang Zhou, Chen Xie, Weizhi Liu, Shicai Kuang

PII:	S0894-1777(18)30436-9	
DOI:	https://doi.org/10.1016/j.expthermflusci.2018.03.021	
Reference:	ETF 9418	
To appear in:	Experimental Thermal and Fluid Science	
Received Date:	8 September 2017	
Revised Date:	13 March 2018	
Accepted Date:	19 March 2018	

Please cite this article as: S. Zou, T. Yao, L. Guo, W. Li, Q. Wu, H. Zhou, C. Xie, W. Liu, S. Kuang, Non-Uniformity of Gas/Liquid Flow in a Riser and Impact of Operation and Pipe Configuration on Slugging Characteristics, *Experimental Thermal and Fluid Science* (2018), doi: https://doi.org/10.1016/j.expthermflusci.2018.03.021

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Non-Uniformity of Gas/Liquid Flow in a Riser and Impact of Operation and Pipe Configuration on Slugging Characteristics

Suifeng Zou*, Tian Yao, Liejin Guo**, Wensheng Li, Quanhong Wu, Hongliang Zhou, Chen Xie, Weizhi Liu, Shicai Kuang

State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China

*E-mail addresses: <u>zousuifeng.2011@stu.xjtu.edu.cn</u>, <u>zsf9010@126.com</u>. **Corresponding author. Tel: +86 29 82663895; Fax: +86 29 82669033. E-mail address: <u>lj-guo@xjtu.edu.cn</u>.

Abstract

A pipeline-riser system is a typical complex pipe configuration in which the non-uniformity of gas/liquid flow is observed to be significant under certain flow rates. This article interprets slugging flow, the most common flow regime in a pipeline-riser system, in the context of a pipeline-riser system, which differs from the approaches used to characterise slugging cycles in previous studies. By comparing data collected by several transmitters positioned locally on the riser and comparing flow in a simple vertical pipe, both the temporal and spatial non-uniformity of the gas/liquid distribution in the riser is presented and interpreted; the relationship between them is also illustrated. The non-uniformity of the flow provides an effective means to quantitatively evaluate the severity of slugging in a pipeline-riser system under different operating conditions. In addition to flow uniformity, specific flow characteristics can be affected by operating conditions as well as pipe configuration. Several factors closely related to the design of experimental facilities and procedures are investigated by a case study of three experimental loops with different layouts and dimensions, and several general findings are summarised. The results may contribute to a better and more specific understanding of gas/liquid flow mechanisms in a pipeline-riser system in addition to serving as a means to evaluate the features of laboratory pipeline-riser systems and the applicability of laboratory results in industrial cases.

Keywords: pipeline-riser system; temporal and spatial non-uniformity; differential pressure; pipe configuration; flow boundary condition; active flow control

Variables or		Abbreviations	
symbols		(also	
		subscripts)	
С	choke coefficient, $Pa \cdot s^2 \cdot m^{-2}$	DI	downward inclined
DP	differential pressure transmitter	DV	downward vertical
Δp	pressure drop, kPa	Н	horizontal
Р	pressure transmitter	IR	Irregular regime, described in Section 2
p	pressure, kPa, MPa	OSC	Oscillation regime, defined in Section 2
Q	mass flow rate, kg \cdot min ⁻¹	R	Riser
и	velocity, $m \cdot s^{-1}$	SS	Severe slugging regime
		SS1	Type 1 of Severe slugging regime,
			defined in Section 2
Subscripts		SS2	Type 2 of Severe slugging regime,
_			defined in Section 2
a	air	SS3	Type 3 of Severe slugging regime,
			defined in Section 2
in	inlet	ST	Stable regime, defined in Section 2
S	superficial (at 0°C, 101.325 kPa)	UST	Unstable regime, defined in Section 2
sep	separator		
W	water		

Nomenclature

Download English Version:

https://daneshyari.com/en/article/7051742

Download Persian Version:

https://daneshyari.com/article/7051742

Daneshyari.com