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a b s t r a c t

In this work, we investigate the shock wave–inertial vapor bubble interactions by taking the nonequilib-
rium phase transition at the interface, fluid compressibility, and axisymmetric bubble deformations
including jet penetration into account. We use the level set method (Sussman et al., 1994) and the ghost
fluid method (Fedkiw et al., 1999), which were improved so as to consider the nonequilibrium phase
transition (Jinbo & Takahira, 2012). The numerical treatments for heat and mass fluxes through interfaces
due to the phase transition are implemented, satisfying the conservation laws of mass, momentum, and
energy at the interface and preventing the interface from becoming diffused. The influence of surface ten-
sion is also considered in the method. The improved method is applied to the shock–bubble interaction
under the experimental conditions by Sankin et al. (2005). The pressure waveform of the incident shock
wave is comprised of a leading compressive wave with a peak pressure of 39 MPa and a pulse duration
of around 1 ls, followed by a trailing tensile wave of �8 MPa in peak pressure with a pulse duration of
around 2 ls which is determined from the experiment. The liquid-jet formation and the generation of
shock waves from the collapsing nonspherical bubble are simulated successfully by taking the nonequi-
librium phase transition and surface tension into account. The validity of the simulation is shown by
comparing the numerical results (e.g. the intensity of the shock wave generated by the bubble collapse
and displacement of the bubble centroid) with those obtained from the experiments (Sankin et al.,
2005; Klaseboer et al., 2007). We investigate the effects of the phase of bubble oscillations when the inci-
dent shock wave impinges on the spherically-shrinking bubble, on the shock wave radiated from the bub-
ble collapse. It is also shown that when the nonequilibrium phase transition at the interface of
nonspherically collapsing bubbles is considered, the minimum bubble radius and the maximum space-
averaged pressure value inside the bubble reached during its collapse decreases and increases, respec-
tively, compared with those in the case without the phase transition.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

A purely vaporous bubble may produce higher energy concen-
tration and resulting stronger pressure waves in the liquid than
those from the collapsing bubble filled with noncondensable gas
[1]. Moreover, the jet velocity following the nonspherical bubble
collapse induced by shock wave impingement reaches several
km/s [2]. According to their researches, quite high pressure and
temperature fields and quite fast liquid flow would be locally gen-
erated in cavitation flows where many vapor bubbles are gener-
ated with evaporation and some of them collapse; the shock

waves generated from the collapsing bubbles interact with the sur-
rounding vapor bubbles. Thus, the shock wave–inertial vapor bub-
ble interaction is an important issue to clarify cavitation
phenomena, which is attracting attention in various fields, such
as industrial and medical applications. As is well known, cavitation
causes material damages such as the erosion on ship propellers or
pump structures [3]. In order to avoid such damage, it is necessary
to evaluate the maximum jet velocity and local high pressure,
relating to the pitting of materials. On the other hand, useful appli-
cations with cavitation are developed for decontamination and
purification of water. It is also important to investigate the high
temperature locally generated from an almost adiabatically com-
pressed bubble and shear stresses generated by high speed water
jets in order to optimize the efficiency of cleaning using cavitation.
In addition, the collapse of cloud cavitation is effectively used in
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the recent technique for fragmentation of kidney stones [4]. In the
technique, the high-frequency pulse and the following low-fre-
quency trailing pulse are used for creating cloud cavitation and
for collapsing the cloud, respectively. Thus, the interaction
between such a pressure wave and an inertial vapor bubble is also
important for optimizing the efficiency of fragmentation.

Shock wave–inertial vapor bubble interaction experiments
were conducted by Sankin et al. [5]. In their experiments, Nd:YAG
laser was used to generate single vapor bubbles with reproducibil-
ity. The lithotripter shock wave hit on the bubble at the different
phases of the bubble oscillation. Their experiment showed that
the highest pressure waves were observed when the bubble was
initially shrinking with 0.7 times larger radius than its maximum
radius. Klaseboer et al. [6] also investigated the shock wave inter-
action with initially oscillating bubbles experimentally and numer-
ically. They proposed a fast and stable numerical simulation
method to simulate the shock wave–bubble interaction by using
the boundary element method. However, it was not sufficient for
their method to deal with shock wave–vapor bubble interactions
because fluids were assumed to be incompressible and phase tran-
sition was not considered in their method.

In the present work, we numerically analyze the shock
wave–inertial vapor bubble interactions by considering the non-
equilibrium phase transition through interfaces, fluid compressibil-
ity, axisymmetric bubble deformations including jet penetration,
and surface tension coupled with the nonspherical bubble collapse.
In our previous work [7,8], we improved the level set method [9] and
the ghost fluid method (GFM) [10] to capture boundary locations
and to satisfy boundary conditions at vapor–liquid interfaces
including the effects of nonequilibrium phase transition. In the pres-
ent paper, we extend the method to deal with surface tension at the
interface. The improved method is applied to shock–bubble interac-
tion under the experimental conditions by Sankin et al. [5], and the

numerical results are compared with the experimental ones [5,6].
The effects of the nonequilibrium phase transition and the phase
of bubble oscillations, the moment of a shock impacting on the
spherically-shrinking bubble, on bubble collapse are discussed.

2. Numerical method

In our previous works, we developed the method that can treat
vapor–liquid interfaces with nonequilibrium phase transition,
resolving the complicated interface structure and preventing the
structure from being diffused [7,8]. The level set method [9] and
the ghost fluid method (GFM) [10] were improved to deal with
the discontinuity, with less numerical diffusion, across the inter-
face due to the phase transition. The idea of adaptive zonal grids
was implemented in the GFM to capture the fine interface struc-
ture of collapsing bubbles efficiently. In the present work, we
extend the method to deal with the effects of surface tension
including the variation of the bubble surface accompanied by
phase transition.

2.1. Governing equations

The spherical or axisymmetric Euler equations are solved by
considering the thermal diffusion. The diffusion obeys Fourier’s
law. The following stiffened gas equations of state [7,11] are used:

p ¼ ðc� 1ÞqðE� �Þ � cP ð1Þ

E ¼ Cp

c
T þP

q
þ � ð2Þ

where q is the density, p the pressure, E the internal energy per unit
mass, and T the temperature. c, P, e, and Cp are the parameters used

Nomenclature

Cp constant in the stiffened gas equation of state, J kg�1 K�1

E internal energy per unit mass, J kg�1

H Heaviside function
L latent heat per unit mass, J kg�1

_m mass flux, kg m�2 s�1

n unit normal directed toward vapor from liquid
p pressure, Pa
Pc nominal pressure amplitude resulting from a bubble

collapse introduced in Refs. [5,6], Pa
Pc8, Pc10 nominal pressure amplitudes measured at 1.1 mm

downstream in the present computation when
R0/Rmax = 0.8 and 1.0, Pa

ps the maximum pressure of the incident shock wave, Pa
p0 saturation pressure at 296 K, Pa
q heat flux vector, J m�2 s�1

r, z radial and axial components in cylindrical coordinates
rs radial component in spherical coordinates
Dr, Dz, Drs grid spacing
Req equivalent bubble radius, m
Rmax the maximum bubble radius, m
R0;R

0
0 initial bubble radius in the present axial symmetric

computation, and modified initial bubble radius fol-
lowed by the definition in Refs. [5,6], m

s entropy, J K�1

T temperature, K
t time, s
t unit tangential vector
t0 characteristic time defined as Rmax(qs/Dp)1/2 where

Dp = ps – p0, s

Dt time step, s
DT temperature jump at the interface due to phase transi-

tion, K
u velocity vector, m s�1

uR relative velocity vector defined in Eq. (8), m s�1

V bubble volume, m3

Greek symbols
aP accommodation coefficient
c constant in the stiffened gas equation of state
e constant in the stiffened gas equation of state, J kg�1

u level set function
j curvature, m�1

P constant in the stiffened gas equation of state, Pa
q density, kg m�3

qs water density when the pressure is ps, kg m�3

r surface tension, N m�1

Subscripts
v vapor
l liquid
i interface

Superscripts
ext extrapolated values from real fluids
ghost values of ghost fluids
real values of real fluids

Y. Jinbo et al. / Experimental Thermal and Fluid Science 60 (2015) 374–384 375



Download English Version:

https://daneshyari.com/en/article/7052364

Download Persian Version:

https://daneshyari.com/article/7052364

Daneshyari.com

https://daneshyari.com/en/article/7052364
https://daneshyari.com/article/7052364
https://daneshyari.com

