Accepted Manuscript

Effect of turbulence intensity on the pressure drop and heat transfer in a staggered tube bundle heat exchanger

Z. Vlahostergios, D. Missirlis, M. Flouros, C. Albanakis, K. Yakinthos

PII: S0894-1777(14)00210-6

DOI: http://dx.doi.org/10.1016/j.expthermflusci.2014.08.011

Reference: ETF 8291

To appear in: Experimental Thermal and Fluid Science

Received Date: 17 June 2014
Revised Date: 28 July 2014
Accepted Date: 21 August 2014

Please cite this article as: Z. Vlahostergios, D. Missirlis, M. Flouros, C. Albanakis, K. Yakinthos, Effect of turbulence intensity on the pressure drop and heat transfer in a staggered tube bundle heat exchanger, *Experimental Thermal and Fluid Science* (2014), doi: http://dx.doi.org/10.1016/j.expthermflusci.2014.08.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effect of turbulence intensity on the pressure drop and heat transfer in a staggered tube bundle heat exchanger

Z. Vlahostergios a, D. Missirlis a, M. Flouros, C. Albanakis, K. Yakinthos

^a Laboratory of Fluid Mechanics & Turbomachinery, Department of Mechanical Engineering,
 Aristotle University of Thessaloniki, Egnatia street, 54124 Thessaloniki, Greece
 ^b MTU Aero Engines GmbH, Dachauerstrasse 665, 80995 Munchen, Germany

Abstract

This paper investigates experimentally the correlation and the effect of the turbulence intensity on the pressure drop and the heat transfer mechanism of a heat exchanger with elliptic tubes in a staggered arrangement. The heat exchanger studied in this work is an air-water cross flow heat exchanger with air being the external fluid and water the internal one. The heat exchanger consists of 144 elliptic tubes placed in a staggered arrangement. The experiments were carried out for two setups. The first setup was referring to isothermal conditions for which only air was used, flowing around the tubes. The second setup was referring to non-isothermal conditions with air as the external fluid and water as the internal working fluid, flowing inside the tubes. The Reynolds number for the external air for the isothermal experiments ranged between 3100 and 5200 based on the maximum velocity between the elliptic tubes. The turbulence intensity values varied between 0.9% and 3%. For the non-isothermal measurements the Reynolds number took values from 3100 to 7700 and the turbulent intensity ranged from 0.9% to 3%. The measurements showed that the

Download English Version:

https://daneshyari.com/en/article/7052384

Download Persian Version:

https://daneshyari.com/article/7052384

<u>Daneshyari.com</u>