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a b s t r a c t

Internal waves are abundant in both the ocean and atmosphere. Their propagation and breaking are
essential to energy transfer and dissipation. However, nonlinear generation of harmonic waves due to
interactions among internal waves of the same scale has not been adequately explored experimentally.
When two nonresonant internal waves collide, harmonics are formed at the sum and difference of mul-
tiples of the colliding waves’ frequencies, transferring energy from the initial wave beams to the harmon-
ics. Here we experimentally explore interactions between nonresonant internal waves of the same scale
and determine the relative kinetic energy transfer to their harmonics for eight unique configurations. We
compare the harmonics generated here to those determined through the analysis of Tabaei et al. (2005)
[1] and Jiang and Marcus (2009) [2]. It is found that approximately 7–16% of the original relative kinetic
energy of the two interacting waves is transferred to the harmonics discussed here. For these configura-
tions this value is more dependent on the relative direction the colliding waves approach each other than
on their particular frequencies.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Internal waves are consistently generated in continuous, stably
stratified fluids, such as the ocean and atmosphere. In these media
the density of the fluid increases continually with depth, due to
salinity and temperature (ocean) or just temperature (atmo-
sphere). As this stable stratification is disturbed, fluid particles
are moved to regions where they are no longer neutrally buoyant,
and will begin to oscillate. These motions generate internal waves.
In recent decades, it has been found that internal waves have a
non-negligible effect on the transfer and dissipation of energy in
both the atmosphere and ocean [3]. The energy transferred by
internal waves contributes to sustaining deep ocean life through
ocean mixing [4] and can affect global climate patterns [5] through
altering the global energy distribution. In an attempt to investigate
how internal waves are generated, interact with surrounding phe-
nomena, and dissipate aids in understanding how internal wave
energy transfer affects the global energy distribution. Simplified
linear models have been used extensively to estimate the genera-
tion, propagation, and dissipation of internal waves. Unfortunately,
nonlinear effects can make significant contributions to energy

exchange among internal waves and much is still to be learned
in this area.

In an attempt to investigate the nonlinear dynamics of internal
wave propagation multiple studies have focused on internal waves
interacting with realistic phenomena. These include wave propa-
gation through vortices [6,7], shear [8–12], density discontinuities
[13–15], sheared density variations [16], solid boundaries [1,17–
21], and other internal waves [2,22–27]. When these interactions
are nonlinear, complexities are introduced and harmonic wave
generation often occurs.

A particular type of wave–wave interaction which has been
studied extensively is a resonant wave–wave interaction. In this
situation two internal waves collide and during the interaction
their energy is transferred with a third wave such that
x1 �x2 ¼ x3 and k1 � k2 ¼ k3 where x is the wave frequency
and k is the total wavenumber. The frequency, x, satisfies the
dispersion relation,

x2 ¼ N2 k2 þ l2

k2 þ l2 þm2
; ð1Þ

where k and l are the horizontal (x and y, respectively) wavenum-
bers and m is the vertical (z). N is the Brunt–Väisälä, or buoyancy,
frequency and must be constant in (1). Although N varies through-
out the depth of the ocean, it is nearly constant in the deep ocean
and we will assume it is constant here. N is defined by
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N2 ¼ � g
q0

@�q
@z

ð2Þ

where �q is the average density variation as a function of depth, g is
gravity, and q0 is the reference density. Internal waves only exist at
frequencies less than that of the buoyancy frequency.

Resonant wave–wave interactions were first believed to be
important when introduced by Phillips [28]. They have since been
the focus of many studies [29–32] which have shown their signif-
icant contribution to energy transfer between frequencies in the
Garrett and Munk spectrum [33]. Parametric subharmonic instabil-
ities (PSI) follow this resonant condition, wherein a large scale
(primary) wave is perturbed and, following the resonance condi-
tions above, it begins to emit two waves of approximately half
the primary wave frequency at smaller scales. Recent studies have
shown this may be an effective mechanism by which internal wave
energy is transferred to small enough scales that breaking may
occur [34–38]. Internal wave reflection also follows the resonant
condition, and Thorpe created an analytical model of nonlinear
plane wave reflection at a density interface and found harmonics
generated at twice the original wave frequency [14]. Higher
harmonics were also found during reflection from a sloping solid
surface in numerical models [1], experiments [17,21], and ocean
observations [18].

Despite the prevalence of studies on resonant wave–wave inter-
actions, there have been relatively few studies concerning nonres-
onant wave–wave interactions. These are wave–wave interactions
which do not conform to the resonance condition, however waves
of harmonic frequencies may be generated due to the nonlinear
collision of the waves. Tabaei et al. [1] and Jiang and Marcus [2]
estimated analytically the expected propagation directions of
waves of harmonic frequencies generated during an interaction be-
tween waves of nearly the same scale. As with resonant wave–
wave interactions, when two nonresonant internal waves collide,
harmonics at the sum and difference of multiples of the colliding
waves’ frequencies are formed. This phenomena can be character-
ized by

xharmonic ¼ jPx1 � Qx2j; ð3Þ

where xi represents the frequencies of the colliding waves
ði ¼ 1;2Þ, x1 > x2, and P and Q represent any pair of positive inte-
gers. Lower order harmonics, where P and Q are small, are generally
more important than higher order harmonics, and only harmonics
with x < N can develop into propagating internal waves. Harmon-
ics will only form if energy is transferred from the colliding waves
to the harmonics. To the author’s knowledge, no previously per-
formed laboratory experiments have attempted to quantify the
transfer of energy from two colliding internal waves of the same
scale to generated harmonics.

A nonresonant wave–wave interaction was created by McEwan
[39] as he explored the impact of interactions on the continuous
stratification of the fluid, but there was little focus on generated
harmonics. Chashechkin and Neklyudov [40] found harmonic fre-
quencies present in their experiments by inserting conductivity
probes in and around the interaction region of two colliding waves.
They found the amplitudes of the generated harmonics but did not
quantify the energy transferred to the harmonics. Internal wave
interactions were visualized by Teoh et al. [41], but no harmonic
internal waves were reported in this case due to symmetry and
the harmonic frequencies being higher than the Brunt–Väisälä fre-
quency. Instead, energy accumulated in the evanescent harmonics
until the fluid eventually overturned. Javam et al. [42] performed
numerical studies on interacting internal waves and confirmed
that if harmonic energy could not leave the interaction region in
the form of propagating waves, overturning would ensue. On the
other hand, if propagating harmonic waves were formed, the

harmonics would have frequencies in accordance with (3), and
the stratification would not be destroyed. Numerical studies were
also performed by Huang et al. [43] in their study of nonresonant
interactions in the atmosphere. The analytical work of Tabaei
et al. [1] derives equations predicting the amplitudes of harmonics
generated by two colliding internal wave beams assuming weakly
nonlinear theory. Their derivations predict that up to six first-order
harmonic waves are generated, all at different amplitudes. These
selection rules were augmented by Jiang and Marcus [2], who cre-
ated a complete set of directional propagation rules for the first-or-
der harmonics generated during these interactions.

This study performs laboratory experiments to visualize the
two-dimensional flow field when two nonresonant internal waves
collide. We compare qualitative results to Tabaei et al. [1] and Jiang
and Marcus [2], and determine the total kinetic energy transferred
to harmonics. As the two waves interact, harmonics are generated
within the interaction region and propagate from the interaction
site at a new frequency. In particular, the first-order harmonics,
where P and Q in (3) are equal to one, are analyzed as well as an-
other harmonic predicted by Tabaei et al. [1] with P ¼ 2 and Q ¼ 1.
Frequencies of the colliding wave beams are chosen to ensure that
these harmonic frequencies are not evanescent.

The laboratory setup and analysis techniques are described in
Section 2. Results are presented in Section 3, and Section 4 contains
conclusions.

2. Methods

2.1. Experimental setup

Experiments are performed in an acrylic tank of width 11.4 cm
and length 250 cm which was filled to a depth of approximately
100 cm. It is filled with linearly stratified salt water using the ‘‘dou-
ble bucket’’ method [44]. The density profile is determined by tak-
ing fluid samples at various depths. The density of each fluid
sample is measured using an Anton Paar 4100 density meter which
is accurate up to 0.1 kg/m3. The buoyancy frequency is found di-
rectly from the density profile and has a typical value of
N = 1.180 ± 0.005 s�1.

Two internal waves are created using wave generators based on
the design of Gostiaux et al. [45]. Each wave generator consists of
nine plates manufactured from 0.635 cm thick acrylic which form a
single wavelength (Fig. 1). The plates are separated by 0.1 cm
resulting in a total generator height of 6.5 cm and thus a vertical
wavenumber for all generated waves of m ¼ 2p=kz ¼ 97 m�1. The
plates are 11.2 cm wide, only 0.2 cm less than the width of the
tank, to ensure the generated wave is two-dimensional. Traversing
through the center of the plates is a cam which is driven by a shaft

Fig. 1. Wave generator consisting of 9 acrylic plates. A rotating shaft extends into a
cam through the center of the plates. The cam causes the plates to move in a
sinusoid profile, generating an internal wave beam.
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