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a  b  s  t  r  a  c  t

This  paper  presents  a new  method  for tuning  various  linear  controllers  such  as  Proportional–Integral  (PI),
Proportional–Integral–Derivative  (PID)  and  Proportional–Resonant  (PR)  structures  which  are  frequently
used  in  power  electronics  and  power  system  applications.  The  linear  controllers  maintain  a  general
structure  defined  by the  Internal  Model  Principle  (IMP)  of  control  theory.  The  proposed  method  in  this
paper  is  twofold.  The  first  perspective  uses  the  well-known  concept  of the  Linear  Quadratic  Regulator
(LQR)  to address  the  problem  as  a  regulation  problem.  The  Q  matrix  of  the  LQR  design  is then  finely
adjusted  in  order  to  assure  the  desired  transient  response  for  the  system.  The  second  perspective  redefines
the LQR  in  order  to add  capability  to  address  the  optimal  tracking  problem  and  is then  generalized  to
systems  with  more  than  two  states.  These  methods  are  then  applied  to  two  specific  examples,  one  in  an
uninterruptible  power  supply  (UPS)  inverter  system  and  the  other  one  in  a  distributed  generation  (DG)
system.  In  these  examples,  the  tuning  of  PR  and  PI  controllers  is  studied  in  great  detail.  These  proposed
design  methods  provide  an  easy  and algorithmic  procedure  without  jeopardizing  stability  or  robustness.
These  tuning  methods  can  also  be utilized  for  linear  state-space  realization  of  any  power  converters.
Both  examples  are  supported  via  simulation  and  the results,  which  confirm  analytical  derivations,  are
presented  and  discussed.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Power electronics and power system applications use
various forms of linear controllers such as Proportional–
Integral (PI), Proportional–Integral–Derivative (PID) and
Proportional–Resonant (PR) controllers, to achieve control objec-
tives mainly specified by the desirable transient and steady-state
requirements. Such structures originate from the Internal Model
Principle (IMP) of control theory, which states that a model of the
desired commands (and disturbances) must exist in the loop to
ensure desired steady-state operation and provide that the loop
is stable [1].  Thus, a PI (or PID) controller is appropriate for step
references and a PR controller for sinusoidal references. The IMP,
however, only guarantees the steady-state performance (given
that the loop is already stable). The transient response must be
controlled by appropriate selection of the controller gains.

There is an abundance of applications for PI, PID and PR con-
trollers in power systems and power electronics systems. Some
examples are given below without discussing the details for brevity.
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In [2],  an advanced method is proposed for tuning a PID controller
in a hydro-turbine for speed and active power control. PI and PR
controllers are used in [3] for parallel and series inverters in a
micro-grid power quality compensator. Note that the gains are
tuned analytically based on the concepts of phase and gain mar-
gins. This concept is developed for a PR controller in [4] for output
voltage control of parallel uninterruptible power supplies (UPS).
Using a Proportional–Integral-Resonant (PI-RES) for multiple har-
monic controls in a Distributed Generation (DG) unit is proposed
in [5].  In addition, PR controllers in the stationary reference frame
are designed for the series and parallel grid-side converters in a
grid connected doubly-fed induction generator (DFIG) wind turbine
yielding better dynamic performance during network unbalances
[6]. The frequency injection method for tuning of a PID controller
in switch mode power supplies is discussed in [7].  PI and PR con-
trollers are also used and analytically tuned for an inverter-based
DG unit [8] and also in a multilevel active filter [9].  In [10], a
fuzzy-based self-tuning PI is proposed for a thyristor-controlled
series capacitor (TCSC) system to improve power system stabil-
ity. Evolutionary-type algorithms are also used to adjust the fuzzy
PID controller gains for an automatic voltage regulator (AVR) [11].
Model predictive control (MPC) is used in [12] to provide on adap-
tive under-voltage load shedding scheme to protect power systems
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against voltage instability. Tuning a PID controller using the LQR
method for a multivariable system is presented in [13]. The LQR in
[14] adjusts the gains in a multi-loop scheme control of a UPS output
voltage. That scheme is however dependent on the output LC-filter
parameters and also requires the measurement of the load current.
Similar optimal control with LQR can be found in [15] where a real-
time emulation is required for loading in a voltage source inverter
(VSI). The LQR technique is additionally used in [16] to adjust a
multi-loop scheme which is based on a PI controller and the time-
derivative of the reference signal in a set of parallel inverters. The
work in [17] also uses the LQR technique in combination with dead-
beat control to improve the damping of an LCL-filter used to connect
a three-phase source to the grid. A nonlinear control of a linearized
wind turbine power generation with DFIG is optimized by LQR in
[18]. Feedback linearization controls a VSI using pole placement
technique to achieve controller coefficients [19].

The well-known and popular concept of LQR offers a highly
advantageous method for optimally tuning controller gains in a
feedback system; such a method provides appropriate phase-gain
margin and variation with respect to nonlinearities [20]. Fur-
thermore, the robustness of a loop can be represented by an
interrelation of robust and optimal controllers [21–23].  LQR design
can offer high robustness in the subject of system parameter uncer-
tainties, resulting in 60◦ of phase and infinite gain margins [24]. To
apply this method to a regular loop with output feedback, how-
ever, the system equations must be put into a state-feedback form.
This means that an output feedback controller may  or may  not
be expressible in LQR formulation. The second limitation is that
the LQR addresses a regulation problem and cannot originally be
applied to a tracking problem, which is desired in practice. These
two drawbacks have often been considered as hurdles when work-
ing with LQR and have not been systematically addressed in the
literature. In this paper, the objective is to overcome these two
drawbacks of the LQR method. We  are particularly concerned about
power system applications, an UPS and a DG system are specific
examples addressed in this work.

The proposed technique of this paper is twofold. The first fold
finds an optimal Q matrix (in the LQR formulation) which ensures
the desired transient response characteristics. This is performed
based on the concept of dominant closed-loop poles by mathemat-
ically reversing the procedure in the LQR concept formulation. The
second approach is based on reformulating and modifying the LQR
problem such that optimal tracking is also addressed, i.e. incor-
porating a “tracking-based” control scheme. The power converters
can also employ these tuning methods for their linear state-space
realization.

The structure of the paper is as follows. A review of the LQR
concept is presented in Section 2. Descriptions of a UPS inverter sys-
tem and a DG unit as case-study systems are provided in Section 3.
Section 4 designs optimal feedback controllers for the case-study
systems by optimally tuning the Q matrix based on the concept
of dominant poles. An alternative design approach, which directly
addresses the tracking problem, is presented in Section 5. It is
applied to the UPS and DG unit examples and is generalized to
systems with more than two states. Realistic simulation results in
PSCAD are presented in Section 6 to verify the analytical results.
Section 7 concludes the paper.

2. LQR concept

A linear time-invariant system can generally be described by the
following state-space representation

ẋ = Ax + Bu t > 0 x(0) = x0
y = Cx + Du t ≥ 0

(1)

where A ∈ � (n×n), B ∈ � (n×m), C ∈ � (p×n), D ∈ � (p×m) are constant
matrices, u is the control signal, x is the state vector, and y is the
system output.

The conventional LQR problem is to design a full-state feedback
law u = − Kx optimally regulate the states and its output to zero [20].
In the LQR problem, the optimality is measured by

J(u) =
∫ ∞

0

(xT Qx + uT Ru)dt (2)

where Q = QT ∈ � (p×p) is a positive (semi) definite and
R = RT ∈ � (m×m) is a positive definite matrix. It is shown that
the optimal K is given by

K = R−1BT F (3)

where the symmetric matrix F = FT ∈ � (n×n) is obtained from the
Algebraic Riccati Equation (ARE), i.e.

AT F + FA + Q − FBR−1BT F = 0 (4)

The closed-loop dynamics under state feedback law with u = − Kx
given by

ẋ = (A − BK)x = ACLx (5)

and the eigenvalues of ACL are the closed-loop poles.
Existence of the solution is under the assumptions that (A,B)

is stabilizable, (A,C) detectable, R > 0, Q ≥ 0 and (Q,A) has no unob-
servable mode on the imaginary axis [20,25].  In addition, R can be
chosen unit without lose of generality.

For every given Q matrix, the closed-loop poles are optimally
assigned by the LQR solution to achieve optimal regulation. In prac-
tice, however, we  desire the control system output to track some
specific reference command such as a step or a sinusoid. This often
requires the addition of another output feedback controller in addi-
tion to the state-feedback. Unfortunately, the LQR approach cannot
be directly used to optimally design every gain, including those
of the state-feedback and of the output feedback. Thus, to over-
come this drawback of the method, we propose two methods in
this paper. The first method adjusts Q matrix in order to place the
closed-loop poles within a specific set in the complex plane which
ensures desired tracking (or transient) characteristics. The second
method directly addresses the tracking problem.

3. Review of UPS and DG control systems

To develop the proposed optimal tuning method, two  spe-
cific applications of the method are exemplified. One is a single
phase UPS system and the second a dq -transformed three phase
grid-connected DG system. For both systems, it is shown that the
proposed optimal tuning method is successively applied to PR and
PI controllers. In this regard, these two systems are described briefly
in this section.

3.1. UPS inverter system

Fig. 1 shows the power stage of a single-phase inverter which
includes an IGBT half-bridge configuration and an LC-filter. The
equivalent series resistance of the filter capacitor is not consid-
ered in the model since its effect appears far above the frequency
range of concern [26]. The differential equations that describe the
large-signal dynamic behavior of this converter are

L
diL
dt

= Vin

2
u − vo − rLiL (6)

iC = C
dvo

dt
= iL − io (7)
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