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A B S T R A C T

A complete set of ordinary differential equations, based on modifications of existing models, is used to in-
vestigate bubble growth and collapse under microgravity conditions in this paper. As in previous work, effects of
inertia, surface tension and viscosity are taken into consideration in the momentum equation of the liquid phase
outside of vapor bubble, while effects of “moving interface”, interface curvature and thermal resistance of
surrounding liquid are considered in the evaporation of the vapor bubble. A dimensionless fitting constant b is
introduced to account for area change of the moving vapor/liquid interface and the diffusive nature of the
interface layer. The values of these fitting constants for bubble growth and bubble collapse in water and ethanol
are obtained by matching predicted temporal variations of bubble radii with experimental data. The predicted
interfacial dynamics during bubble growth and bubble collapse is analyzed. Different stages during the bubble
growth process are characterized. During the early stage of bubble collapse, the simulated bubble radii show
some “fluctuations”, which can be attributed to the “rebound effect” of pressure balance in the bubble owing to
the initial condition of a sudden drop in temperature.

1. Introduction

Bubble growth and/or collapse in fluids are fundamental phe-
nomena in many problems, such as in subcooled boiling, condensation,
cavitation, bubble sonoluminescence and sonofusion [1–5]. The pro-
cesses are inherently complex because phase-change heat transfer takes
place at a moving interface where the bubble radius is changing with
time. In the past, although much theoretical modeling [6–13] and ex-
perimental investigations [14–16] have been performed to study bubble
growth, only a few experimental studies have been carried out for
bubble collapse [16–18]. Moreover, few dynamical modeling work has
been published on bubble collapse because of numerical instabilities
[5,16].

It is known that the dynamics of bubble growth can be characterized
in terms of three different mechanisms: inertia-controlled, thermal
diffusion controlled and mass diffusion controlled mechanisms [19].
Approximate analytical solutions for bubble radius as a function of time
for bubble growth based on different assumptions have been derived
[20–23]. However, these analytical solutions show significant devia-
tions from reality under certain conditions, such as in the very early

stage of bubble growth when the superheat is small (or the Jacob
number is small) or when the operating pressure is extremely low
[8,24].

In our previous paper [24], a modified version of existing models
based on many approximations was proposed to study bubble growth in
a superheated liquid. Although the model shows good accuracies but
several questions remain unresolved. First, the model was built under
zero gravity condition but it was only partially validated with experi-
mental data obtained under normal gravity. The effect of the buoyance
force in a normal gravitational field may induce appreciable transla-
tional velocities and deformation of a bubble [14,15,25], which ob-
scures the process of growth/collapse, and brings difficulties to confirm
the validity of the model. Secondly, problems of bubble growth and
bubble collapse, which should be solved with the same set of governing
equations, have not been verified. In this paper, we study the problems
of bubble growth and bubble collapse under the following considera-
tions: (i) a set of ordinary differential equations for bubble radius is
derived which are applicable for both bubble growth and bubble col-
lapse processes. (ii) The curvature effect of the heat flux through the
interface of the bubble is taken into consideration. (iii) A dimensionless
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parameter is introduced to account for effects of area change of the
moving vapor/liquid interface and the diffusive nature of the interface,
and the role of this parameter is demonstrated explicitly. (iv) The model
is built under zero gravity conditions which is validated with existing
experimental data obtained in a free fall condition [17,25], where
buoyancy-induced translational motion and deformation of a bubble
can be neglected in the model validation.

2. Mathematical model

The problem of bubble growth in a superheated liquid is sketched in
in Fig. 1(a) where Pv > P∞ while the problem of bubble collapse in a
subcooled liquid is sketched in Fig. 1(b) where Pv < P∞, both of which
are assumed under microgravity conditions. In these figures, variations
of pressure and temperature in the radial distance refer to the real si-
tuation where the pressure has a discontinuity at the vapor/liquid in-
terface while the temperature has a smooth and continuous variation
across the interface (denoted by the dashed line) between vapor bubble
and liquid outside of the bubble. In the following, we present a zero-
order solution [7,8] for bubble growth/collapse under the following
assumptions: (i) Under microgravity conditions, where the bubble is
assumed to be spherically symmetric during its growth and collapse
processes. (ii) The liquid of infinite extent is static and incompressible at
a uniform temperature at T∞ and a uniform pressure at P∞. (iii) The
vapor bubble is a perfect gas at a uniform temperature at Tv and a
uniform pressure Pv. (iv) A sharp interface exists between the vapor and
the liquid. In other words, the interface thickness is zero for the zero-
order approximation, where both pressure and temperature are dis-
continuous at the interface.

Based on these assumptions, an ordinary differential equation for
the variation of bubble radius R as a function of time for bubble
growth/collapse can be derived from the momentum equation in a
spherical coordinate [20] for the liquid phase as follows
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Eq. (1) is obtained by integrating the momentum equation in the

radial direction from the vapor/liquid interface to infinity with the
assumption of an incompressible flow, which is a zero-order

Nomenclature

P pressure, Pa
T temperature, K
R bubble radius, m
Rv ideal gas constant, J/(kg·K)
r radial distance from the bubble center, m
u radial velocity, m/s
t time, s
hlv latent heat of evaporation, J/kg
Cp specific heat at constant pressure, J/(kg·K)
Δt time step, s

Greek symbols

ρ density, kg/m3

σ surface tension, N/m
μ viscosity, kg·m/s
λ thermal conductivity, W/(m·K)
α thermal diffusivity, m2/s, α= λ/(ρCp)
δ characteristic length of heat conduction, m

Subscripts

v vapor
l liquid

R liquid vapor interface
∞ infinity
c critical
0 initial
sat saturation
sup superheat level
sub subcooling level
hd hydrodynamic
vis viscosity
st surface tension
g gas

Superscripts

· first-order differential
·· second-order differential
s stationary
m moving

Dimensionless numbers

b dimensionless fitting constant for moving interface
b= δTs/δTm

φ dimensionless temperature, φ=1− Tsat/Tc
Ja Jacob number, = −∞Ja C ρ T T
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Fig. 1. Sketches of bubble growth in a superheated liquid and bubble collapse
in a subcooled liquid.
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