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A B S T R A C T

The need of more sophisticated cooling schemes for gas turbine blades is continuously increasing, since the hot
gas maximum temperature in gas turbines has a direct influence on the engine thermal efficiency. Here, pre-
dictions of the heat transfer by means of Computational Fluid Dynamics (CFD) can complement or even reduce
the number of experimental investigations. However, the modelling of the turbulent heat fluxes in the Reynolds-
averaged Navier-Stokes equations heavily relies on empirical approaches. We propose a new framework for the
prediction of the turbulent heat fluxes based on machine learning and tensor representation theory. A data-
driven model is constructed based on the tensor description of Younis et al. (2005) and implemented in
OpenFOAM. Its validation for Poiseuille flow at different Reynolds numbers shows very good agreement with
reference data.

1. Introduction

The thermal efficiency of a gas turbine is strongly affected by the
maximum cycle temperature reached by the hot gas, which nowadays
exceeds by far the melting point of the turbine blade material [1]. Thus,
sophisticated cooling systems are required to prevent engine failure,
and the need for accurate heat transfer predictions by means of CFD is
strongly increasing. Unsteady simulations based on Large Eddy Simu-
lation (LES) are often prohibitively expensive at large Reynolds num-
bers [2,3]. Indeed, high spatial and temporal resolutions are required,
and data must be sampled for adequate time periods to compute flow
statistics. On the other hand, Reynolds-Averaged Navier-Stokes (RANS)
methods have significantly lower resolution requirements and directly
provide mean flow quantities. The averaging process results in un-
known terms, the Reynolds stress tensor − ρ u ui j and the scalar flux
vector − ρc u tp i . Here, ui and t are respectively the turbulent fluctua-
tions of velocity and temperature. Due to the complexity of the physics
involved, their modelling is very challenging and mostly based on
empiricism [3]. Advancements have been made in the development of
models for the Reynolds stress tensor since the first two-equation tur-
bulence model of [4]. Closures based on [5] are able to represent tur-
bulence anisotropy with a nonlinear eddy-viscosity approach. Concepts
such as the elliptic relaxation [6] and the elliptic blending [7] account
for the influence of solid walls on the Reynolds stresses. Turbulence-

structure tensors [8] include nonlocal information in single point-clo-
sures. Efforts have been made to improve turbulence models using
machine learning algorithms [9–11]. On the other hand, the scalar flux
modelling in complex flows with heat transfer is mostly based on the
gradient-diffusion hypothesis [12–14]. This model represents the scalar
flux vector with a Fourier-like equation
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The eddy diffusivity Γt is usually evaluated by scaling the eddy
viscosity, υt with a turbulent Prandtl number σt
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Since the eddy diffusivity Γt is isotropic, the scalar flux and tem-
perature gradient vectors are parallel, which is generally not the case in
reality [13]. Anisotropic models for the scalar fluxes have seen in-
creasing attention in the scientific community in the last 30 years [14],
but viable solutions for wall heat transfer problems of engineering in-
terest are still limited, especially if only explicit models are considered
[12,13]. A convenient approach to model the anisotropic thermal dif-
fusivity is the use of tensor representation theory to derive an explicit
algebraic formula [15]. However, the model coefficients are functions
of flow field invariants whose exact form is unknown. In this paper, we
propose a method for deriving functional forms for the model
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coefficients using machine learning algorithms.

2. Test case

The test case is the Poiseuille flow with heat transfer, which is de-
scribed in detail in [16]. Referring to Fig. 1, the Reynolds number is
defined as

= Uδ
υ

Re (3)

where U is the mean axial flow velocity magnitude, δ is the channel
half-height and υ the kinematic viscosity. The wall distance will be
expressed in viscous lengths

=+y U x
υ
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where =U τ ρ/τ w is the friction velocity, τw= ρ υ(∂U/∂x1) is the wall
shear stress, and ρ the density. The following non-dimensional tem-
perature will also be used

=+T T
Tτ (5)

here, =T Q ρc u̇ /τ w p τ is the friction temperature, Qẇ the wall heat flux
applied at x2= 0 and cp the specific heat at constant pressure. The
Reynolds stress tensor and the scalar flux vector can also be represented
in the following non-dimensional form
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3. Computational setup

Fig. 1 provides a summary of the boundary conditions. We assume
in the following a fully developed flow in a plane channel. Computa-
tional grids with 21, 42, 70, and 100 cells along the wall normal di-
rection are used respectively for the Reynolds numbers 5665, 14,100,
24,428 and 41,400. The flow is assumed incompressible and the tem-
perature is treated as a passive scalar. Source terms in the momentum
and energy conservation equations allow periodicity of the flow and
thermal fields [17]. The SIMPLE algorithm of [18] is used as flow
solver, and all the convection terms are discretised using second-order

differentiation schemes. A treatment analogous to that of the pressure
in collocated grid arrangements is applied to the Reynolds stresses to
improve convergence [19]. Grid independency is assessed by repeating
the simulations with doubled grid resolution, where the maximum
variations in Uτ and Tτ are found to be respectively within 1% and 1.5%.

4. Description of the current model

We introduce a framework for computing the scalar fluxes using
tensor representation theory and machine learning. The framework is
named “Italo”. Functional forms for the model coefficients in agreement
with tensor representation theory are derived using a big-data ap-
proach. Individual neural networks reproduce the behavior of each
model coefficient, whose distribution over the computational domain is
determined prior training.

4.1. Neural networks

Neural networks are arrangements of perceptrons [20], which ap-
proximate the behavior of biological neurons. A perceptron (or artificial
neuron, Fig. 2a) performs the following operation

= +σ by W x( )T (7)

where x is the neuron input, W the weights, b the bias, σ an activation
function and y the neuron output. Both the weights and biases are
training parameters, which can be tuned to approximate a data set. We
use the multilayer feed-forward neural network (Fig. 2b) as universal

Nomenclature

b neuron bias, [−]
Ci model coefficient, [−]
cp specific heat at constant pressure, J K−1

f objective function, [−]
k turbulent kinetic energy, m2 s−2

Qẇ wall heat flux, W
Rij non-dimensional Reynolds stress tensor u u k/i j
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{S} non-dimensional shear stress tensor invariant S Sij ji , [−]
T mean temperature, K
T+ non-dimensional temperature T/Tτ, [−]
Tτ friction temperature Q ρc u̇ /( )w p τ , K
Ui mean velocity vector, m s−1

U mean velocity magnitude, m s−1

Uτ friction velocity τ ρ| |/w , m s−1

ui velocity fluctuation vector, m s−1

u ti scalar flux vector, m K s−1

+u ti non-dimensional scalar flux vector u u U T/( )i j τ τ , [−]
u ui j Reynolds stress tensor, m2 s−2

+u ui j non-dimensional Reynolds stress tensor u u U/i j τ
2, [−]

W weight matrix, [−]
X neural network input, [−]
x neuron input, [−]
xi coordinate, m
Y neural network output, [−]
y neuron output, [−]

Greek symbols

α thermal diffusivity, m2 s−1

Γt eddy diffusivity, m2 s−1

δ channel half-height, m
ε turbulent dissipation, m3 s−2

υ kinematic viscosity, m2 s−1

υt turbulent viscosity, m2 s−1

ρ fluid density, kg m−3

σ neuron activation function, [−]
σt turbulent Prandtl number, [−]
τw wall shear stress ρ υ(∂U/∂x1), kg m s−2

Fig. 1. Test case: Fully developed flow in a parallel plane channel.
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