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A B S T R A C T

This note is concerned with a new method for the evaluation of an unknown coefficient in a parabolic equation.
The method starts with an initial guess for the unknown function and obtains corrections to the assumed value at
every iteration. The updating step is the new feature of the present algorithm. The method treats the error field
which has the appropriate (zero) Dirichlet boundary conditions. The algorithm shows good robustness to noise
and can be used to obtain a good estimate of the unknown function. A number of numerical examples are used to
show the applicability of the method.

1. Introduction

In this note, we introduce a new method for inverse coefficient
evaluation of a parabolic system. Such problems arise in many appli-
cations including evaluation of permittivity distribution [1], ground
water contamination [2], optical tomography [3] and heat transfer
[18,19].

It is well-known that this problem is highly ill-posed [16], and var-
ious methods have been developed to deal with the ill-posedness that is
associated with such problems. The literature on this problem is vast.
Recent results on this particular problem include methods based on
Quazi-Reversibility [17,4], minimization of a cost functional [5,6],
multiple forward problem [7], elliptic system method [13], and
methods based on inverse Sturm-Liouville problem [8,9].

The purpose of this note is to develop a new method for the eva-
luation of the absorption coefficient in one and two dimensions. In both
cases we assume that the unknown function can be measured at the
boundary, and for simplicity, we assume that it is equal to one. The
proposed method was first developed for the inverse evaluation of a
boundary condition in steady heat conduction problem [11]. It was also
applied for the inverse evaluation of the initial condition for a parabolic
system [14]. In Section 2, we present the algorithm. It assumes an in-
itial value for the unknown function and obtains corrections to the
assumed value. The new feature of the present algorithm is the up-
dating stage which is presented in Section 3. In Section 4, we use a
number of numerical examples to study the applicability of the method.

2. Problem statement and the identification algorithm

Let = ∈ ∈t x x t tΩ {( , ), [0, 1], [0, *)} and consider a 1-D parabolic

equation given by

= + ∈
= = =

u u a x u t x
u t g t u t g t u x u x
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where u(t,x) is the temperature, a(x) is the absorption coefficient and
Dirichlet boundary conditions are imposed. The unknown function is
the absorption coefficient a(x). This ill-posed problem is supplemented
by the additional Neumann boundary conditions at the boundaries, i.e.

= == =u f t u f t| ( ), | ( ).x x x x0 0 1 1 (2)

The inverse problem of interest here is to recover a(x) based on the
additional given conditions at the boundaries (2). For the purpose of
inversion, we can define u(t,x)= ev(t,x) [10] (since u(t,x)> 0) and re-
write Eq. (1) according to
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The given data are transformed according to vx= ux/u at the bound-
aries with u>0 for all t ∈ [0,t*]. This formulation is suitable because
the unknown function is isolated in Eq. (3). The present algorithm is
iterative and consists of three steps.

[1 ] Assume a value for the unknown coefficient xâ( ) and, using the
given Dirichlet boundary conditions g0(t) and g1(t), obtain a back-
ground field satisfying the system

̂ ̂ ̂
̂ ̂ ̂
= + + ∈

= = =
v v v x t x
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â( ), ( , ) Ω,
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[2 ] Subtract the background field from Eq. (3), and obtain the error
field, ̂= −e t x v t x v t x( , ) ( , ) ( , ), given by

̂= + − + − ∈
= = =

e e v v a x x t x
e t e t e x

( ( ) â( )), ( , ) Ω,
( , 0) ( , 1) (0, ) 0.
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2 2

(5)

The error field is required to satisfy additional conditions. The given
data is in the form of the gradient of the field at the boundaries, ux
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[3 ] Assume that the unknown function is related to the assumed value
according to = +a x x q x( ) â( ) ( ), where q(x) is still an unknown
function. Use the additional boundary conditions in Eq. (6) and
obtain the unknown correction q(x) to the assumed value of a(x).
Update the assumed value, xâ( ), and go to step I.

The novel feature of the present method is the third step in the
above algorithm which is the evaluation of the unknown absorption
coefficient using a new method. The method was developed for an el-
liptic ill-posed heat conduction problem [11].

3. Proper solution space

The third step of the algorithm involves the identification of the
correction to the assumed value of the absorption coefficient a(x). We
first linearize the quadratic terms in Eq. (5) according to
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To recover q(x) for x ∈ [0,1] we can proceed as follow. Consider a
linearly independent set of functions cℓ(x), ℓ=1,2,…,N over x ∈ [0,1]
and assume that the unknown function q(x) can be expressed as a linear
combination of these functions, i.e. ∈ …q x c c c( ) { , , , }N1 2 . We are as-
suming that it is possible to evaluate the unknown a(x) at the bound-
aries, and as a result, we can assume that q(0)= q(1)= 0. Next, gen-
erate a set of functions that satisfy the error field equation with the
known (zero) Dirichlet boundary condition, i.e.,

̂= + + = = =v c t t xϵ ϵ 2 ϵ , ϵ ( , 0) ϵ ( , 1) 0, ϵ (0, ) 0.xℓ ℓ ℓ ℓ ℓ ℓ ℓt xx x (8)

Therefore, every function ϵℓ(t,x) satisfies the (zero) Dirichlet boundary
conditions at x=0 and x=1, and zero initial condition. It is then
possible to expand the actual (and unknown) error field e(t,x) in the
span of the space generated by ϵℓ(t,x), ℓ=1,2,..,N, according to

∑=
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where the functions ϵℓ(t,x) are known, but the constants τℓ are un-
known. We next argue that the error field e(t,x) must satisfy the gra-
dient condition that is furnished by the measurements and are given in
Eq. (6). The gradient conditions can be expressed by the operators ℬ0

and ℬ1. The error field is required to satisfy the conditions given by
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The above two equations can be used to obtain the unknown coeffi-
cients τℓ for ℓ=1,2,…,N. This step is presented in more details in the
next section. Once the unknown coefficients are obtained the unknown
q(x) can be computed by substituting Eq. (9) in Eq. (7) which leads to

̂∑ − − =
=

τ v q x[ϵ ϵ 2 ϵ ] ( ).
N

x
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Using Eq. (8) and assuming an expansion for = ∑ =q x σ c x( ) ( )N
ℓ 1 ℓ ℓ , and

simplifying leads to

Notation

u(t, x) Temperature
a(x) Absorption coefficient
g0 (t), g1 (t) Temperature at the boundaries
f0 (t), f1 (t) Temperature gradients collected at the boundaries

e(t, x) Error field
ℬ0, ℬ1 Differential operators describing the boundary conditions
B0, B 1 Matrix representations for ℬ0 and ℬ1

ϵℓ (t, x) Elements in the proper solution space
cℓ (x), ℓ=1, .., N A linearly independent set of functions
β, α Positive parameters
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Fig. 1. The recovered absorption for the Example 1. The figure compares the
final value to the actual function.
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Fig. 2. The reduction in error for the Example 1 as a function of the number of
iterations.
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