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A B S T R A C T

In a recent work, Zhang and Padrino (2017) derived an equation for diffusion in random networks consisting of
junction pockets and connecting channels by applying the ensemble average method to the mass conservation
principle. The resulting integro-differential equation was solved numerically using finite volumes for the test
case of one-dimensional diffusion in the half-line. For early time, they found that the numerical predictions of
pocket mass density depend on the similarity variable xt−1/4, representing sub-diffusion. They argue that the
sub-diffusive behavior is a consequence of the time needed to establish a linear concentration profile inside a
channel. By theoretical analysis of the diffusion equation for small time, they confirmed this finding.
Nevertheless, they did not present an exact solution for the small time limit to compare with. Here, starting with
their small-time leading order diffusion equation in (x,t) space, we use elements of fractional calculus to cast it
into a form for which an analytical solution has been obtained in the literature for the same boundary and initial
conditions in terms of the Fox H-function (Schneider and Wyss, 1989). For ease of computation, we express the
solution in terms of the Meijer G-function. We compare the exact solution with Zhang and Padrino's numerical
predictions, resulting in excellent agreement, thereby validating their numerical approach.

1. Introduction

Diffusive transport is ubiquitous; it occurs in nature and in human-
designed systems. Diffusion, in its ordinary or normal form, has re-
ceived enormous attention from researchers and, as a result, is essen-
tially well understood. The well-known distinctive attribute of ordinary
diffusion is that the mean squared displacement of the transported
agent evolves linearly with time. In recent decades, the focus in re-
search on diffusion has shifted towards the study of the so-called
anomalous diffusion. This process differs from ordinary diffusion in that
the evolution of the mean squared displacement with time is slower
(sub-diffusion) or faster (super-diffusion) [1–3]. Rather than being a
rare event, anomalous diffusion has been observed and modeled in a
wide variety of settings, such as in single-file particle diffusion [4–8];
charge carriers transport in amorphous semiconductors [9]; bead dy-
namics in a polymeric network [10,11]; bacterial motion [12]; trans-
port in fractal geometries [13,14], in porous media [15,16], in random
fractured networks [17], in turbulent plasmas [18], and in micelle
systems [19] (for a comprehensive list of applications and some his-
torical remarks, see [20]). What has been called “anomalous” is, in fact,
a common occurrence [21].

A mathematical approach that has proven to be well suited to the

theoretical analysis of anomalous diffusion is the fractional calculus
and, in particular, the differential equations of fractional order [20]. In
this case, the model differential equation is known as fractional diffu-
sion equation [22,23]. Fractional calculus has been known for more
than two centuries [24,25]; however, its application to modeling
anomalous diffusion phenomena seems to be rather recent [20,23,26-
28]. The fractional diffusion equation has been written as a somewhat
heuristic extension of the ordinary diffusion equation to study anom-
alous diffusion [22,29-32]. On the other hand, it has arisen as the result
of a rigorous application of the theory of continuous time random
walks [20,31,33,34].

In a recent article, Zhang and Padrino [35] derived an equation for
mass diffusion in a random network of junction pockets connected by
tortuous channels of various lengths by applying the ensemble average
method to the mass balance in the network. Random networks seem to
be suitable idealizations of complex interactions of the most diverse
nature. An example is the modeling of transport in porous
media [36,37]. To attain closure, Zhang and Padrino [35] computed the
flux in a single connecting channel assuming one-dimensional ordinary
diffusion between the connected pockets. Given the isotropic prob-
ability density function P(x,y,ℓ) of having a pocket at x connected to
another pocket at y by a channel of length ℓ, they obtained the
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following expression for the time evolution of pocket mass density
ρp(x,t):

∫

∫

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

∂
∂

+ ⎛
⎝

− ⎞
⎠

∂
∂

= ∇⋅⎛
⎝

∇ ⎞
⎠

+ ∇⋅ ⎛
⎝

− ⎞
⎠

∂
∂

∇ ⎛
⎝

⎞
⎠

−∞

−∞

x
x

x

x x

θ
ρ
t

K t τ
ρ τ

τ
dτ D ρ

K t τ
τ

ρ τ dτ

,
( , )

( )

, , ,

p
p t

m
p

p

t
D p

(1)

where θp is the volume fraction of pockets, D is an effective diffusivity,
and Km and KD are the mass and diffusivity kernels, respectively. These
quantities are defined as
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which arises from the Fourier series solution of normal (ordinary) dif-
fusion in a single channel. Here, =x y xP P r πr( , , ℓ) ( , , ℓ)/(4 )2 with
r=|y −x|; A is the channel average cross sectional area, and ∼D is the
area-weighted average diffusivity inside the channel. The closed aver-
aged integro-differential Eq. (1) contains time integrals representing
history effects of mass diffusion. The details of the derivation of this
equation can be found in [35]. It is noteworthy that they found the so-
called dual-porosity model [38] to be equivalent to the leading order
approximation of the integration kernel in their new model when the
diffusion time scale inside the channels is small compared to the mac-
roscopic time scale.

As a test problem, Zhang and Padrino considered one-dimensional
diffusion in a random network occupying the half-line (semi-infinite
domain) assuming that P is also homogeneous and that all connecting
channels have a fixed length ℓ0. Specializing Eq. (1) for this case, the
initial-boundary value problem considered in [35] can be stated as
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for x>0 and t>0 and initial and boundary conditions
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in dimensionless form. The problem was non-dimensionalized using
κ θ θℓ /c p0 0 , ∼Dℓ /0

2 , and ρ0 as the length, time, and mass density scales,
respectively, where ρ0 is the pocket mass density on x=0+, and
parameter =κ π/(8 )0 0

2T , with 0T being a reference tortuosity. This
relation comes from the assumption that the probability density P is
modeled with the Maxwell-Boltzmann distribution and by relating its
mean with 0T . The model for the probability density function P also
brings in the volume fraction of channels, θc [35]. Zhang and Padrino
proposed a numerical scheme consisting in casting the linear integro-
differential equation (Eq. (1)) into a system of linear partial differential
equations to which they applied the finite volume method and explicit
time integration. After using this numerical approach to solve Eq. (6),
they reported that for small time, for different values of the channel-to-
pocket volume fraction ratio θc/θp, the pocket mass density becomes a

function of the one variable xt−1/4, hence showing a self-similar be-
havior. They confirmed this finding analytically by investigating the
leading order balance in the diffusion equation in the limit of small time
(see Appendix A.6 in their paper). Therefore, a point of constant pocket
density changes its position according to x ∝ t1/4, corresponding to an
anomalous, sub-diffusive process [21]. They explained this behavior by
random walk theory. Assuming that each channel in the random net-
work is formed by paths of random walks, they obtained the scaling of
the straight distance between connected pockets with the one-fourth
power of time by equating the total length of the path of the random
walk traveled by tracer particles inside a channel with the characteristic
diffusive length. From the point of view of continuum physics, they
argued that the early-time sub-diffusion is caused by the amount of time
required to establish a linear mass density profile inside the channels.

Although their asymptotic analysis predicted the early-time anom-
alous self-similar trend observed in the numerical results, they did not
present an expression for the exact solution of the initial-boundary
value problem considered for small time. The purpose of this note is to
report on the exact solution for this limiting case within the framework
of fractional calculus, and to compare its predictions with the numerical
results in [35]. It should be remarked that the model derived and the
numerical solution presented in [35] are not restricted to small times.

2. Analysis and results

On the basis of the conclusion by Zhang and Padrino [35], the
leading order equation for pocket mass density diffusion in random
networks for small time, resulting from the first and last terms of Eq.
(6), may be written as
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subjected to the initial and boundary conditions (7) and (8).
In this work, we use fractional calculus, in particular, the integrals

and differential operators of fractional order, as the tool for the ana-
lysis. Several comprehensive monographs have been written on the
fundamentals and applications of fractional calculus (e.g., [25,39-46]).
The elements of fractional calculus invoked here, such as definitions
and identities, are taken from the works of Gorenflo and Mainardi [24]
and Mainardi et al. [47] unless otherwise noted.

We start by writing Eq. (9) in terms of fractional order time dif-
ferential operators. For this purpose, we introduce the fractional deri-
vative of order α, 0< α⩽1, in the Caputo sense, denoted as D*t

α, and
defined by
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where Γ() denotes the Gamma function. With this definition, and letting
= α πΓ( )/(2 )αD , we can write Eq. (9) as
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with α=1/2. For the sake of the discussion, in what follows we shall
consider the general case 0< α<1, except where noted otherwise.

Another widely used fractional operator is the fractional derivative
of order α, 0< α⩽1, in the Riemann-Liouville sense, denoted as tDα, and
given by
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It is customary to write tD0= I, the “identity” operator, so that tD0f
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