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ARTICLE INFO ABSTRACT

Available online 09 April 2016 The transient thermal performance response characteristics of porous-medium receiver have a major impact on

the operability of a solar thermal power plant (STPP). To investigate the transient thermal performance response

Keywords: ) characteristics of porous-medium receiver, method coupled to the Monte Carlo ray tracing (MCRT) and finite
Porous medium volume method (FVM) was developed to establish a 2D transient state heat-transfer model using a local thermal
LTNE

) non-equilibrium (LTNE) calculation. The effects of the fluid thermophysical characteristics, the fluid-phase type,
g;?::g}lt:;;tre and the solid-phase thermal conductivity on the unsteady-state heat-transfer performance were investigated to
MCRT determine the transient thermal performance response characteristics of porous-medium receiver. The
numerical results indicated that the variation in the air thermophysical properties due to the high working temper-
ature can induce a very small transient thermal performance response in porous-medium receiver (a maximum
deviation of 1.9% was observed in this study). A porous-medium receiver with a high thermal conductivity can
benefit from the dispersion of concentrated energy. The dimensionless solid-phase temperature eon the center
point of receiver in case of A = 40 W/(m-K) was 1.05 at t = 240 s, decreasing to 0.92 in case of A = 120 W/(m-K).
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1. Introduction

According to the IEA, 50% of power plants will be built in the future
and will be powered by clean, sustainable energy [1]. Solar energy
comes at the top of the list of candidate energy sources due to its abun-
dance distribution in nature [2]. As the efficiency of a solar thermal
power plant (STPP) is proportional to the operating temperature, a
modern STPP demands high-grade energy to achieve high temperature
levels and, therefore, achieve efficient power generation with a compact
plant size and the shortest possible payback period [3,4].

In an STPP, the solar energy is concentrated on a focal point or line by
mirrors or lenses, thus giving rise to medium- or high-temperature heat
[5,6]. A receiver/reactor is placed in correspondence of the solar radia-
tion [7]. The receiver is a key component in the solar energy conversion
process: it absorbs the concentrated solar radiation and transfers it to a
heat-transfer fluid (i.e. air, water, or molten salt) at a high temperature
[8]. Due to the large heat and mass transfer surface but low pressure
drop [9], porous medium is widely used for concentrated solar thermal
applications: it had been successfully used on a 3 MW concentrated
solar plant during the SOLAIR project [10]; ETH researchers adopted a
porous medium for the reactor in solar thermochemical applications
[11].

* Corresponding author.
E-mail address: Tanjianyu@hitwh.edu.cn (T. Jianyu).

http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.03.028
0735-1933/© 2016 Elsevier Ltd. All rights reserved.

To further investigate the heat-transfer performance of a porous-
medium solar receiver/reactor, several numerical studies have been
conducted. Cheng et al. adopted the local thermal equilibrium (LTE)
model to research the steady-state coupled heat-transfer performance
of a porous-media receiver [12]. By using Gaussian heat flux distribu-
tion, Vilafan-Vidales analyzed the steady-state thermal performance
of a 1 kW thermochemical porous-medium reactor [13]. A steady-
state 1D model with LTNE calculation was developed by Kribus et al.
to identify the optimum porous-medium receiver operational parame-
ters [14]. A method combining MCRT and FVM was developed by
Wang et al. [15] to investigate the steady-state thermal performance
of a porous-medium receiver/reactor.

As known, the transient thermal performance response characteris-
tics of porous-medium receiver are crucial to the operation of an STPP,
which can greatly affect the reliability of the receiver and system
efficiency, as well as operability of the STPP. A literature survey shows
that many steady-state heat-transfer performance analyses of porous-
media solar receivers/reactors had been performed [15-17] and that
the transient modeling of a porous-medium solar air receiver had
been established with a Gaussian heat flux distribution as a boundary
condition [18].

In order to present the temperature distribution variation with time
more accurately, a method combining the MCRT and FVM methods has
been developed to study the transient thermal performance response
characteristics of a porous-medium receiver. The effects of the fluid
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Nomenclature

Cp specific heat, J/(kg-K)

Cr Concentration ratio

G Total integrated intensity, W/m?
h; Partial enthalpy of species i, ]

hy Transfer coefficient, W/(m?3-K)

Ko Absorption coefficient

ke Extinction coefficient

ks Scattering coefficient

A Linear-anisotropic scattering factor
Iy Intensity of black body

Ge Collimated integrated intensity, W/m?
Gs Diffuse integrated intensity, W/m?
qs Radiative heat flux, W/m?

L Length of receiver, m

r Radius, m

S Source term of energy equation

T Temperature, K

u Velocity in x direction, m/s

v Velocity in y direction, m/s

X,y Coordinates in flow region, m

Greek symbols

0 Density, kg/m>

1) Porosity

a Absorptance

u Dynamic viscosity, kg/(m-s)
A Conductivity, W/(m-K)

€ Emittance

o Stefan-Boltzmann constant
T Optical thickness

0] Albedo

Subscripts

Conv Convective heat transfer

eff Effective

f Fluid phase

max Maximum temperature

rad Radiative heat transfer

ref. Reference temperature, 300 K
S Solid phase

w All

thermophysical characteristics, fluid-phase type, and solid-phase ther-
mal conductivity on the unsteady-state heat-transfer performance has
been investigated.

2. Mathematical model

Due to the reason that transient thermal performance response anal-
yses of a porous-medium receiver has not been conducted previously by
the authors, the transient heat-transfer models of a porous-medium re-

ceiver are listed as follows.

2.1. Continuity conservation equation

@-s-v(pﬂ'):o M

2.2. Momentum conservation equation
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where F designates the pressure correction term for a porous strut and
is calculated by user-defined functions (UDFs) in the Fluent software,
based on the following correlation [18]:
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It should be noted that the above equation is only applicable when
the porosity is within the range of 0.66 < ¢ < 0.93 and the Reynolds
number is within a range of 10 < Re < 400.

2.3. Energy equation
With the aim of providing more information on the fluid-phase

and solid-phase temperature distribution, an LNTE model was adopted
[19,20].

For the fluid phase:
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For the solid phase:
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where the source term Scony ¢ designates the convective heat transfer
between the fluid phase and solid phase (Scony f):

Sconv‘f = hv (Ts _Tf) (6)

In the above equation, h, is the volumetric convective heat-transfer
coefficient, calculated using [18]
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The source term Sg in Eq. 5 is the volumetric heat source term
resulting from the radiative heat transfer (S;.q), convective heat transfer
(Sconv,s), and radiative heat dissipation through the fluid entrance
surface (Sy):

Ss = Sconv,s + Srad + Sw (8)
where

Sconv,s = —Sconv.f = —hv(Ts—T¥) 9)
Sw = —6w0 (T{—T}) (10)

To obtain the radiative source term S;,q in Eq. (8), the radiative
transfer equation (RTE) must be solved [21]:
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