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Available online 09 April 2016 Natural convection is commonly used as a means of heat transfer in many practical products because it is highly
cost-effective. The development of simulation tools for this type of application is generally accompanied by sev-
eral critical issues, including high-temperature differences, rapid turnaround demand, and complex geometries.
Under conditions of natural convection with high-temperature differences, the density of themedium is variable
but the flow speed is low. Therefore, a compressible solver, i.e., Roe scheme developed by P.L. Roe in 1981, must
be combined with a preconditioningmethod that can make the Roe scheme available at low speeds to allow the
above situation to be addressed. The building cube method is adopted to make our method suitable for massive
parallelization systems, which can reduce the calculation and turnaround times immensely. An immersed
boundary method for compressible flows combined with a fast, easy to implement, and robust interpolation
method is developed to handleflowswith complex immersed geometries. The results show that the programde-
scribed here is suitable for application to product design and analysis because of its wide applicability to natural
convection with high-temperature differences, its capacity to handle complex geometries, and its feasibility for
use in massive parallelization systems.
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1. Introduction

The cost-effectiveness of natural convection has caused it to be
widely adopted as the main means for heat transfer in a variety of elec-
tronic devices, such as light-emitting diodes. To enable themanufacture
of better products, the use of computational fluid dynamics (CFD) to
gain an understanding of natural convection for design and analysis ap-
plications appears to be a promising option. In these situations, newCFD
programswith high-performance computing capabilities for rapid turn-
around, dealing with complex geometries such as those of heat sinks
and heat pipes, and obtaining accurate results, are in high demand.

To promote these computational capabilities, the use of exaflop-type
supercomputers for product simulations to produce vast reductions in
turnaround times is expected to occur within the next decade [1].
While CFD using unstructured grids is suitable for all three-dimensional
complex geometries on such huge-scale systems, it is impractical be-
cause of the lengthy computation times required when adopting
higher-order schemes and the inherent memory overheads. To solve
these issues, Nakahashi [2] proposed an idea that involved the genera-
tion of a mesh based on structured grids, which he called the building

cube method (BCM). A typical BCM configuration is shown in Fig. 1.
The basic idea is to fill the entire computational domain with cubes
and then feed each cube with the same number of grids. In this way,
by assigning the same number of cubes to each CPU, the democratiza-
tion of the computational cost for massively parallel computations is
easily achieved and is accompanied by an obvious concomitant
improvement in computational efficiency. In addition, in complex ge-
ometries, smaller cubes can be located near objects to increase the res-
olution near the wall and obtain more accurate results.

While using structured grids can reduce the computational over-
heads, accuracy, particularly that near the boundary, is an important
consideration. In structured grids, a body boundary with complex ge-
ometry must be represented using a staircase-shaped boundary
(Fig. 2), where it is clearly difficult to obtain accurate results. To solve
this issue, the immersed boundary method (IBM) has been developed
over the past few decades. Fadlun et al. [3] pioneered the use of the
IBM on complex geometric structures. In their study, the finite differ-
ence method with second-order interpolation was used to mimic the
boundary of an IC piston/cylinder; the results obtained were consistent
with the experimental data. In an incompressible solver, Tullio et al. [4]
combined the IBM, in which the interpolation is basically the same as
that by Fadlun et al. [3], with a flexible local refinement technique
from a compressible solver with preconditioning for a wide range of
Mach numbers. The results showed that this method can achieve
second-order accuracy. To address heat transfer problems using the
IBM, Kim and Choi [5] followed their earlier work [6] by introducing a
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heat source/sink in the body to satisfy the iso-thermal and iso-heat-flux
conditions. In their method, the value of the forcing term is calculated
based on the surrounding points rather than simply being based on
the points in the axial direction alone, as in the calculations performed
by Fadlun et al. [3] and Tullio et al. [4].

Natural convection in practical applications generally is accompa-
nied by large temperature differences. In such situations, the traditional
method of using an incompressible solver with the Boussinesq approx-
imation is not appropriate because the approximation is limited to tem-
perature differences of less than 30 K [7]. Therefore, a compressible
solver that can also be applied to the low flows induced by buoyancy
is required. Weiss and Smith [8] adopted a preconditioning method to
simulate natural convection through a two-dimensional annulus while
involving a large temperature difference of 1000 K at Ra=4.7×104.
The results showed that this preconditioning method could reduce the

computational times required by a factor of 60. Fu et al. [9–11] used
the preconditioning method to study the same problem in a channel,
demonstrating the reliability and wide applicability of the method.

The aim of this study is to develop a sophisticated and robust pro-
gram for natural convection analysis in practical products. The BCM
[2] is used to make the program suitable for massive parallelization
and high-performance computing implementation to reduce turn-
around times. In addition, in practical applications, the temperature dif-
ference required for natural convection should be recognized as always
being higher than the 30 K permitted by the Boussinesq approximation.
Therefore, we use the Roe-scheme compressible solver [12], a precondi-
tioning method, and dual time stepping [8], which enable the program
to be applicable to the intended situation. In general, practical applica-
tions always come with complex geometry issues. A simple and robust
interpolation technique for the IBM has been developed that is suitable
for usewith compressible flows and enables very thin structures such as
fins to be treated.

2. Governing equations

To calculate the effects of the buoyancy force, the governing equa-
tions used here are the original Navier–Stokes equations with a source
term,
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Fig. 1. BCM configuration. (a) Cube; (b) grids.

Fig. 2. Geometry represented by stair shape.
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