
U
N
C
O

R
R
E
C
T
E
D
 P

R
O

O
F

1 Traveling wave solutions to incompressible unsteady 2-D laminar flows with heat
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15Analytical solutions play important roles in the understanding of fluid dynamics and heat transfer related prob-
16lems. Some analytical solutions for incompressible steady/unsteady 2-D problems have been obtained in litera-
17ture, but only a few of those are found under heat transfer conditions (which brings more complexities into the
18problem). This paper is focused on the analytical solutions to the basic problem of incompressible unsteady 2-D
19laminarflowswith heat transfer. By using the travelingwavemethod, fluid dynamic governing equations are de-
20veloped based on classical Navier–Stokes equations and can be reduced to ordinary differential equations, which
21provide Q10reliable explanations to the 2-D fluid flows. In this study, a set of analytical solutions to incompressible
22unsteady 2-D laminar flows with heat transfer are obtained. The results show that both the velocity field and
23the temperature field take an exponential function form, or a polynomial function form, when traveling wave
24kind solution is assumed and compared in such fluid flow systems. In addition to heat transfer problem, the ef-
25fects of boundary input parameters and their categorization and generalization offield forming orfield evolutions
26are also obtained in this study. The current results are also compared with the results of Cai et al. (R. X. Cai, N.
27Zhang. International Journal of Heat and Mass Transfer, 2002, 45: 2623-2627) and others using different
28methods. It is found that the current method can cover the results and will also extend the fluid dynamic
29model into a much wider parameter ranges (and flow situations).

30 © 2015 Published by Elsevier Ltd.
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35 1. Introduction

36 Analytical solutions have always played important roles in the
37 development of various fluid flow systems, which usually serve as fun-
38 damental basis for comparison of fluid dynamic nature and system evo-
39 lution trends. For example, the analytical solutions of incompressible
40 flow and constant coefficient heat conduction in early days have been
41 the bases of fluid dynamics and heat transfer [1,2]. However, it is diffi-
42 cult to derive the analytical solutions of the governing equations with
43 nonlinear terms, especially the complex governing equations (for fluid
44 systems usually the Navier–Stokes equations are considered) with
45 given initial and boundary conditions.
46 Although with the rapid development of computers and numerical
47 methods, much research has focused on formulating efficient numerical
48 methods to solve fluid dynamics and coupled heat transfer problems, the
49 accuracy of these numerical solutions can only be ascertained by com-
50 parison with exact solutions or empirical/half-empirical correlations

51from experiments. Therefore, it is meaningful to find out some analytical
52solutions not only for the reason that they are found be able to describe
53the detailed behavior of the concerning system, but also that they can
54be used as benchmark solutions to check the accuracy, convergence
55and effectiveness of various numericalmethods and solutions, and to im-
56prove various numericalmethods such as their differencing schemes and
57grid generation skills [3–6].
58For fluid dynamic systems, the well-known Navier–Stokes (N–S)
59equations, first introduced by Navier in 1821, and developed by Stokes
60in 1845, are the fundamental governing equations. For those two hun-
61dred years, many groups have Q11tried to solve this problem. The work
62on the exact solutions of the Navier–Stokes equations has also accumu-
63lated in literature. However, due to the nonlinearity and complexity
64of Navier–Stokes equations, one can only give the solutions to very
65limited/simplified cases. Indeed there only exist a small number of
66exact solutions in literature. In the paper of Wang [7,8], one can find
67the historical reviews of the trials and solutions up to year 1991. And
68in the most recent years, super computers have made it possible to nu-
69merically solve the Navier–Stokes equations and the accuracy of the re-
70sults can be compared with an exact solution. Thus, the exact solutions
71are very important as a Q12test to verify numerical or empiricalmethods for
72complex flow problems. In the recent twenty or thirty years, major de-
73velopments of the exact solutions of theNavier–Stokes equations can be
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74 found in Chandna and Oku-Ukpong [9], Profilo et al. [10], Siddique [11],
75 Venkatalaxmi et al. [12], Warsi [13], Naeem and Jamil [14], Naeem and
76 Younus [15] and others [16].
77 The major methods used in solving the Navier–Stokes equations are
78 variable separation and equation transformationmethods; the equation
79 transformation method then includes potential function assumption
80 and parameter transformationQ13 . The basic process is to change/separate
81 the equations to reduce the problem to the class of nonlinear ordinary
82 differential equations for the first step [17]. Indeed, variable separation
83 has been widely used in solving complex equations.Q14 Potential functions
84 are also often used in similar methods [16,18]. This method hasQ15 to
85 assume the independence relations between the variables, making it
86 difficult to justify the fundamentals of the solving process and the re-
87 sults obtained. Besides the results mentioned in review paper of Wang
88 [7,8], in recent years representative ones can be found bymany groups.
89 For example, Al-Mdallal [19] utilized the canonical transformation with
90 complex coefficients; the Navier–Stokes equations were reduced to a
91 linear partial differential equations that can be solved by using separa-
92 tion of variables. According to the type of the canonical transformation
93 constants (real or complex), Al-Mdallal [19] got different types of
94 exact solutions. By using variable separation method with addition,
95 Cai and Zhang. [20] obtained some exact solutions to incompressible
96 unsteady 2-D laminar flow with heat transfer, neglecting gravity,
97 radiation and internal heat source. By thismethod, Cai discussed a series
98 of problems described by Navier–Stokes equations and found a set of
99 useful solutions to some basic flow situations [21,22].
100 Variable or equation transformationmethods are also generally seen
101 in literatures. For example, Nugroho et al. [17,23] proposed a potential
102 function and transformed coordinate to alter the three-dimensional
103 incompressible Navier–Stokes equations into simpler forms. Further-
104 more, a special class of solutions to the three-dimensional incompress-
105 ible Navier–Stokes equations was obtained by dropping the pressure
106 gradient and it was found that constant pressure gradient will produce
107 similar solutions to that of a zero pressure gradient. The authors also
108 proposed another potential function and transformed coordinate,
109 which has a nontrivial relation with respect to time, and a general
110 functional form of static pressure was applied. Fang et al. [24] have
111 investigated the steady momentum and heat transfer of a viscous fluid
112 flow over a stretching/shrinking sheet, and have presented new exact
113 solutions for the Navier–Stokes equations. These solutions provide a
114 more general formulation including the linear stretching and shrinking
115 wall problems as well as the asymptotic suction velocity profiles over a
116 variety of situations.

117As discussed, one case was the transformation of the Navier–Stokes
118equations to the Schrödinger equation, performed by application of the
119Riccati equation [25] and to achieve much simpler forms. This has good
120prospects since the Schrödinger equation is linear and has well defined
121solutions. The method of Lie group theory was also applied in order to
122transform the original partial differential equations into ordinary differ-
123ential systems [26]. The same route was followed byMeleshko [27] and
124by Thailert [28], in transforming the Navier–Stokes equations to solv-
125able linear systems.
126The current study is one continued trial of solving channel flowwith
127heat transfer by using the transformation method. The current study is
128focused on the transforming of partial differential equations into tracta-
129ble ordinary differential equations or some particular partial differential
130equations. Travelingwavemethod belongs to this family; due to Q16the ap-
131plication of the transform ξ=∑ai xi, partial differential equations can
132be reduced to tractable ordinary differential equations, where ξ is a var-
133iable of ordinary differential equations and it is called a phase of the
134wave, x1, …, xn are independent variables of the partial differential
135equations, and a1, …, an are arbitrary constants.
136In this paper, transformation method and traveling wave solution
137are used to solve the incompressible unsteady 2-D laminar flow with
138boundary heat transfer problem. The current study takes the simplified
1392-D laminar flow conditions,where the instability shearflowwithwave
140transportation happens. Such phenomena indeed are fundamental and
141critical during the formation of shear flow and the establishment of vis-
142cous and thermal boundary layers. The basic mathematical model are
143carefully established and tested with several general cases. It is found
144that the current model is capable of covering such benchmark cases
145and can provide new information on the parameter evolutions of
146Navier–Stokes governed fluid dynamic systems. The following parts of
147this paper are arranged as follows: In Section 2, the government equa-
148tions of the incompressible unsteady 2-D laminar flowwith heat trans-
149fer are presented. In Section 3, two kinds of travelingwave solutions are
150obtained under various conditions. For the first one, the velocity and
151temperature fields mainly depend on exponential functions, while for
152the second one, they depend on Q17polynomial functions. In Section 4,
153the benchmark case results are analyzed and explained in Q18detail.
154Further, the physical descriptions of these solutions are explained and
155some solutions with certain conditions are shown. A short conclusion
156is given in Section 5.

1572. Basic model description and governing equations

1582.1. Physical model and basic Navier–Stokes equations

159In this paper, the general governing equations of the incompressible
160unsteady 2-D laminar flow with heat transfer is considered. The
161governing equations consisted of continuity equation, incompressible
162fluid Navier–Stokes equation and thermal conservation equation,
163which are written as follows (neglecting radiation and internal heat
164source; z-direction is opposite to gravitation) [20]:

∂u
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B:1 Nomenclature

B:2 α thermal diffusivity, [m2/s]

B:3 υ kinematic viscosity, [m2/s]

B:4 Cp specific heat, [J/(kg·K)]

B:5 ρ density, [kg/m3]

B:6 g gravitational acceleration, [m/s2]

B:7 θ temperature, [K]

B:8 p pressure, [Pa]

B:9 u,w velocity components in x, z directions, [m/s]

B:10 t time, [s]

B:11 u0 initial velocity, [m/s]

B:12 p0 initial pressure, [Pa]

B:13 x abscissa, [m]

B:14 z third coordinate, [m]

B:15 ξ transformation ξ = ax + bz + ct, [m]

B:16 a,b constants, a2 + b2 ≠ 0

B:17 c wave speed, [m/s]

B:18 mi, Mj constants used during the integration of equationsB:19
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